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on studying the feedback and control possibilities inherent in the coupling of |
visual stimuli to eye-direction and to the phase of the EEG alpha rhythm.
They succeeded in developing state-of-the-art systems for real-time tracking of
eye-direction and alpha-phase; these computerized tracking systems are capable
of controlling visual stimuli so that their occurrence is conditional upon eyeﬁ
direction and alpha-phase.

Their computerized eye-tracking system, known as PERSEUS, incorporates the
2-dimensional double-Purkinje-image eye-tracker (DPIET) developed at the
Stanford Research Institute. This non-contacting device tracks and compares
the positions of the first and fourth Purkinje images formed by reflections of
infrared light beamed at the subject's eye. By comparing the position of the
fourth Purkinje image with respect to the first Purkinje image, one obtains a
sensitive measure of eye-rotation which is uncontaminated by eye-translation.

“PERSEUS, which is implemented in a PDP-15/76 computer, provides computer-
generated scenic targets for experimental studies, calibration routines for
the linearization of eye-direction estimates obtained from the DPIET, and realf
time analysis of fixation and saccades in relation to scenic targets. PERSEUS

| is capable of stabilizing a computer-generated scenic image upon the retina of
the moving eye; it is also capable of modifying the properties computer-genera
scenic target on the basis of current eye-direction. A model for saccadic eye-
movement was devaloped which permits real-time prediction of saccadic destina-
tion from the early portion of the saccadic trajectory.

A computerized scheme was implemented for the phase-contingent analysis of
the average visual evokad potential.  The results of this investigation were

found to be compatible with the hypothesis that cerebral incorporation of

visual sensory inputs is based upon phase-modulation of the EEG alpha rhythm.
A more elaborate analysis of the average visual evo? d potential in terms of
alpha phase probat at the moment of photic stimulation elso produced
results consistent se-modulation hypothsesis According to the

by the investigators, the cerebral encoding
on the phase-difference between Lhe cortical
alpha phase based upcon stimulation by the thamzlic pacemaker and
the observed cortical phase which may be shifted by the action of the sensory
(exogenous) input. According to this theory, the alpha 'carrier' would have
to be activated in order for demodulation of mnemonic playback to occur. A

nonlinear model of the human EEG signal was developed and tested.

phase-modulation the
of visual sensory i

Since practical success in achieving a biocybernetic 'close coupling' of
man and machine depends upon an enlighted selection of suitably efficient
modeling techniques, a review of recursive modeling methods was undertaken to
provide a systematic classification of an area characterized by rapid and
diverse developments.
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FOREWORD

The Stanford Biocybernetics Project was begun in 1972 with Professor
D. C. Lai and Professor T. Kailath as co-principal investigators.
Dr. J. Anliker of the NASA/Ames Pesearch Center played an active role
as consultant in the planning of this project, made the facilities of
his laboratory available to the project, and helped to guide psycho-
physiological and experimental aspects of the project. Dr. H. Magnuski
served as Poét—Doctoral Research Fellow during 1973-1974, while A. Hua .z,
K. Jacker and L. Strickland provided programming assistance. Two Ph.D.
theses by J. Nickolls and Arun Shah, both Graduate Student Research
Assistants, were completed under the project. After Professor Lai's
return to Vermont in 1975, the major effort was contributed by Dr. Anliker
and by Mr. R. V. Floyd who served as Scientific Programmer. Professor
Martin Morf made valuable contributions in the development of fast

algorithms.

T. Kailath
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ABSTRACT

The ARPA-sponsored Biocybernetics Project at Stanford
University has been concerned with the development of bio-
cybernetic methods for the enhancement of visual perception
of, and memory for, scenic materials. The essence of the
biocybernetic concept is that feedback and control schemes
implemented by appropriate machines can be used to enhance
or extend various aspects of human performance beyond the
unaided limits. In the present project the focus has been
upon enhancing human perception and memory--in particular,
perception and memory of scenic stimuli. Since it is recog-
nized that some individuals are decidedly better visualizers
than others and since it is thought that the ability to visu-
alize scenic materials would confer definite advantages,
this project was conceived to explore the possibility that
biocybernetic methods might be employed to good effect in the
study of human visualization processes and to determine
whether such skills might be trainable through appropriate
feedback or extended by computerized prosthetic devices.

In this project we have concentrated on analyzing the
feedback and control possibilities inherent in eye-pointing
behavior and in the electroencephalographic alpha rhythm.

To this end we have succeeded in developing what is currently
the most advanced eye-tracking system in existence, and, in




collaboration with the Ames Research Center, we have also

developed a state-of-the-art computerized system for track-
ing the EEG alpha rhythm. Both of these systems have the
capability of monitoring their biological targets on an on-
line, real time basis. 1In addition, they can control visual
stimulation so that its occurrence is conditional upon cur-
rent states in the biological targets. These systems are
described in some detail in the body of this report, its
appendices, and references. Work on this project has also
been reported in various publications, reports, and theses;
two Ph.D. dissertations have been submitted to the Depart-
ment of Electrical Engineering, and a third Ph.D. disserta-
tion is being prepared by a student in the Neurosciences
Program.

Accurate real-time monitoring of human eye-pointing
constitutes a very considerable technical task. Our advanced
computerized eye~tracking system, known as PERSEUS, incor-
porates the 2-dimensional double-Purkinje-image eye-tracker
(DPIET) described by Cornsweet and Crane (1973) and updated
by Crane and Steele (unpublished report, Stanford Research
Institute). The DPIET is a hardware system consisting of
an infrared light source, servo-controlled optics, and asso-
ciated electronic circuitry. This device tracks and com-
pares the positions of the first and fourth Purkinje images
formed by reflections of infrared light beamed at the sub-
ject's eye. Inasmuch as these two Purkinje images change

their separation when the eye rotates but move the same amount
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in the same direction when the eye translates, their amount

of separation provides a sensitive measure of eye-rotation
which is uncontaminated by the principal source of eye-tracking
error, viz., eye-translation. However, the DPIET has cer-

tain limitations which must be compensated fcr by the compu-

terized system. For instance, the DPIET knows nothing about
higher order phenomena such as fixations and saccades; these
must be discriminated as temporal patterns appearing in the
continuous output voltages representing horizontal and ver-
tical eye-positions. Nor does the DPIET have any provision
for creating and controlling the display of visual stimuli.
Finaliy, there are the idiosyncrasies of each subject's eye
which can produce nonlinear distortions in the eye-tracker
estimates of eye-pointing coordinates. In PERSEUS the
analysis of fixations and saccades, the generation and con-
trol of scenic stimuli, and the linearization of each sub-
ject's nonlinearities are all handled by a medium-sized disk-
oriented digital computer, the PDP-15/76. This highly ac-
curate (less than 4 minutes of arc error over a field 20
degrees in diameter) eye-tracking system has been used to
implement various biocybernetic schemes for controlling scenic
displays on the basis of eye-position. It is capable, for
example, of stabilizing a scenic stimulus upon the subject's
retina without any attachments to the eye. While in this
mode it can blank any portion of the display, e.g., peri-
phery, parafovea, or fovea. PERSEUS performs real-time
analyses on sequential fixations and saccades, numbers scan-

path fixations, and superimposes this information on an
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ancillary CRT display of the visual stimulus. The data col-

lected during experiments are stored and subjected to more
complex forms of off-line analysis. Of particular interest
are the visual contact probability plots; these 3-dimensional
surfaces are formed by weighting the area surrounding each
fixation by an estimate of the local retinal acuity. For
quantitative purposes the contact probability surfaces are
sliced at equal amplitude intervals to produce a set of iso-
contours which are then superimposed upon the scenic stimu-
lus pattern. By comparing these iso-contours with a similar
analysis of the spatial frequencies in the stimulus it is
possible to obtain a measure of selective attention which
takes into account the eye's natural preference for high
frequency "hot spots."

Our studies of the EEG alpha rhythm have been of two
kinds: (a) detailed off-~line analyses of the individual
sample functions which are ordinarily subjected to time
averaging to produce the visual average evoked potential and
(b) studies of phase-conditional photic stimulation. For
the evoked potential studies we have employed quadrature
analysis for the definition of EEG alpha phase, i.e., phase
with respect to a coherent alpha phase (not interhemispheric
phase differences). 1In one study we examined the role of
the contingent alpha phase, i.e., the phase of the alpha
rhythm at the moment of photic stimulation. When we re-
classified the AEP sample functions into twenty different
contingent phase ranges, averaged the sample functions within

v




each phase range separately, and compared these contingent
averages, we found that the stimulus seemed to phase-shift
each of these averages in the latency range associated with
the prominent N1-P2-N2 complex in the AEP. This suggested
that the stimulus might be acting to phase-shift the cortical
alpha rhythm away from the phase anticipated in the autono-
mous or unstimulated alpha rhythm. This would produce a
cortical phase at variance with the thalamic pacemaker. To
check further into this possibility, we extracted the time-
varying phase function from each of the raw EEG sample func-
tions. This gave us the phase of the cortical alpha activity
:

in each sample function at 2-msec intervals following the
stimulus. From these phase data we constructed 3-dimensional
phase probability surfaces (phase, latency, probability) for
each of the phase-contingent subsets of the AEP data. Then
we extracted the modal phase function from each of these
contingent phase probability surfaces. This analysis showed
clearly that our previous conclusion based on phase contin-
gent averaging was correct. That is, the photic stimulus
acts shift the contingent phases in the direction of a "pre-
ferred" phase at the latency corresponding to the prominent
N1-P2-N2 complex in the AEP. These results are also consis-
tent with our phase uncertainty model of stimulus encoding
in the visual cortex.

For our phase-conditional stimulation studies we de-
vised a novel method for tracking and modeling the frequerncy

and phase of the cortical alpha rhythm. 1In this computerized
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scheme, the alpha frequency is monitored continuously by
autocorrelating the EEG signal and interpreting this trans-
form. This computation is accomplished by a special purpose
computer (SAICOR 400-pt. ¢orrelator). A general purpose com-
puter does the interpretation into frequency and uses this
information to control the frequency parameter of a pro-
grammable oscillator. The output of the oscillator (now
tuned to the alpha frequency) is fed into another correlator
where it is cross correlated with the current EEG signal.
The output of this correlator is interpreted as phase dif-
ference between the two signals; this phase information is
used to null the phase difference by adjusting the phase
parameter of the programmable oscillator. Through this com-
plex procedure the output of the programmable oscillator is
made to model closely the frequency and phase properties of
the EEG alpha rhythm. From this point it is a relatively
simple matter for the computer to make the presentation of

a photic stimulus conditional upon a specified phase of the
alpha rhythm.

In a project such as this, closely-coupled systems
cannot be achieved without the aid of efficient estimation
and prediction of the brain's states as revealed in such
outputs as eye-movements and EEG scalp potentials. Although
the brain's activities are complex and time-varying, linear
systems modeling techniques can be used successfully to pre-
dict brain states. Model parameter estimates can be updated

in time, yielding a useful time-varying linear model.
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Nonstationarities in observed outputs can be modeled with
time-varying parameters, or with a time-invariant linear
model with suitable initial conditions. In the appendix
entitled "A Classification of Recursive Modeling Methods"

we have presented a systematic classification of exact least-
squares modeling procedures that are recursive (in model-
order) and optimal in some sense. Methods which are sub-
optimal or approximate are only briefly indicated.

Of the three types of procedures considered, e.qg.,
Riccati or square-root methods, fast methods utilizing matrix
shift-invariance properties, and ladder-form methods, the
latter two are most suited to problems requiring efficiency.
In particular, the recursive (in time) versions lend them-
selves to on-line or real-time applications because the
input-output data are assessed sequentially one sample at a
time. Also, new parameter estimates are available at each
sample time, which facilitates the solution of on-1line
control problems.

The ladder-form methods also have the desirable prop-
erty that their stability can be checked merely by inspec-
tion of the reflection coefficients. In addition, they are
numerically robust since the major operations are sample
cross correlations. They also have minimal storage require-
ments for least-squares modeling methods. The structure of
the ladder-type realization suggests that the reflection co-
efficients may have physical significance in the process

being modeled.
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Finally, it may be noted that practical success in
achieving the desired close-coupling of man and machine will
depend upon an enlightened selection of suitably efficient
modeling techniques. Our review of recursive modeling
methods is intended to provide a systematic classification

of an area characterized by rapid and diverse developments.




INTRODUCTION

The purpose of the Stanford Biocybernetics Project was
to investigate the feasibility of developing and using
biocybernetic technology (a) to study visual picture percep-
tion and scenic memory and (b) to enhance human memory--in
particular the quality, persistence, and retrievability of
visual images of environmental objects. Would it be possi-
ble, in other words, to use real-time computerized monitors
and feedback loops to arrange extraordinary coincidences of
eye-movement scanpaths, electroencephalographic states, and
visual stimulus confiqurations so as to favor the production
of unusually vivid, persistent, and memorable visual images
of the stimulus material? Although the common adult experi-
ence with post-stimulus visual images is one of rapid fading,
there have been persistent reports that, in some individuals,
vivid visual images persist much longer than is usual and
that they can, in these cases, sometimes be recalled with
remarkable accuracy and modified at will. Some investigators
have viewed these phenomena as evidence of neural pathclogy
while others have tended to regard them as manifestations of
unique biological gifts. We are inclined to ask whether
they may be regarded as indications that these individuals
simply utilize more successful strategies for the impression,
storage, and retrieval of scenic (as opposed to verbal) in-

formation.




Available evidence suggests that unusually strong
visual imagery is most frequently observed in children and
only rarely persists into adulthood; furthermore, it appears
that the development and exercise of verbal skills coincides
with a reduced incidence of exceptional visual imagery of
the eidetic type. If it could be shown that the basic
capacity for visual memory is a common human property which
is given a low priority in a predominantly verbal society,
it might be possible to devise suitable training procedures
for the strengthening and control of visual memory as a
voluntary option in educated adults. But if, on the other
hand, visually gifted individuals should prove to have
unique biological endowment, it seems reasonable to ask
whether computers can be made to function as prosthetic de-
vices which would compensate for inadéquate or missing per-
ceptual or mnemonic mechanisms, on the one hand, or disable
or suppress normally-active imagery-inhibiting mechanisms,
on the other hand, so that visual imagery can be made to be
unusually vivid, persistent, and retrievable. Of course,
since the uncontrolled perseveration of visual images is
more likely to be distracting rather than useful, the matter
of volitional control is of considerable importance. Another
possibility that deserves consideration is that, with compu-
terized assistance, even relative strong visual imagery could
be further enhanced, thereby extending the limits of human

performance. We can say with some certainty that one of the

principal barriers to progress in the design of closely-coupled
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man-machine systems is our limited knowledge of human memory

mechanisms. It seems reasonable to assume that properly de-
signed closely-coupled man-machine systems can be used not
only for obtaining superior measurements of human percep-
tual and mnemonic capacities, but also the enhancement of
perceptual and mnemonic skills.

Our plan was to design and implement computerized

techniques for real-time monitoring and prediction of visual

imagery-relevant brain activities through the use of eye-
movements and EEG signals as estimators of these central
activities. This predictive information was to be used to
control visual displays in a manner designed to enhance
visual mnemonic effects. In this report we shall describe
our successes and our failures, our progress and our detours,
and our revised views of the problems involved in achieving

a biocybernetic enhancement of visual perception and memory.
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PER3EUS: A STATE-OF-THE-ART EYE-COUPLED SCENE GENERATOR

Accurate real-time monitoring of human eye-pointing
constitutes a very considerable technical task. Our advanced
computerized eye-tracking system, known as PERSEUS, incor-
porates the 2-dimensional double-Purkinje-image eye-tracker
(DPIET) described by Cornsweet and Crane (1973) and updated
by Crane and Steele (unpublished report, Stanford Research
Institute). The DPIET is a hardware system consisting of
an infrared light source, servo-controlled optics, and asso-
ciated electronic circuitry. This device tracks and com-
pares the positions of the first and fourth Purkinje images
formed by reflections of infrared light beamed at the sub-
ject's eye. Inasmuch as these two Purkinje images change
their separation when the eye rotates but move the same
amount in the same direction when the eye translates, their
amount of separation provides a sensitive measure of eye-
rotation which is uncontaminated by the principal source of
eye-tracking error, viz., eye-translation. However, the
DPIET has certain limitations which must be compensated for
by the computerized system. For instance, the DPIET knows
nothing about higher order phenomena such as fixations and
saccades; these must be discriminated as temporal patterns

appearing in the continuous output voltages representing




horizontal and vertical eye-positions. Nor does the DPIET
have any provision for creating and controlling the display
of visual stimuli. Finally, there are the idiosyncrasies of
each subject's eye which can produce nonlinear distortions

in the eye-tracker estimates of eye-pointing coordinates.

In PERSEUS the analysis of fixations and saccades, the gen-
eration and control of scenic stimuli, and the linearization
of each subject's nonlinearities are all handled by a medium-
sized disk-oriented digital ccmputer, the PDP-15/76. This
highly accurate (less than 4 minutes of arc error over a
field 20 degrees in diameter) eye-tracking system has Leen
used to implement various biocybernetic schemes for control-
ling scenic displays on the basis of eye-position. It is
capable, for example, of stabilizing a scenic stimulus upon
the subject's retina without any attachments to the eye.
While in this mode it can blank any portion of the display,
e.g., periphery, parafovea, or fovea. PERSEUS performs real-
time analyses on sequential fixations and saccades, numbers
scanpath fixations, and superimposes this information on an
ancillary CRT display of the visual stimulus. The data col-
lected during experiments are stored and subjected to more
complex forms of off-line analysis. Of particular interest
are the visual contact probability plots; these 2-dimensional
surfaces are formed by weighting the area surrounding each
fixation by an estimate of the local retinal acuity. For
guantitative purposes the contact probability surfaces are
sliced at equal amplitude intervals to prcduce a set of iso-

contours which are then superimposed upon the scenic stimulus
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pattern. By comparing these iso-contours with a similar

analysis of the spatial frequencies in the stimulus it is
possible to obtain a measure of selective attention which
takes into account the eye's natural preference for high

frequency "hot spots."

LIMITATIONS INHERENT IN HARDWARE INSTRUMENTS

Sooner or later, the user of a ready-made instrument
must come to terms with the capabilities and the limitations
inherent in his particular instrument. Efficient exploita-
tion of an instrument requires a good understanding of the
instrument's input requirements and its output limitations.
It is the user's responsibility to do the work necessary for
the proper application of the instrument. The maker of the
instrument is only responsible for the intrinsic design and
construction of the instrument per se. The instrument-maker
only agrees to do a limited amount of the user's work in
solving certain kinds of problems. Despite all of this,
there is a tendency on the part of instrument-users to ex-
pect more help from the instrument-maker than the instrument-
maker does, in fact, provide. The instrument-user must take
up where the instrument-maker leaves off. He must learn to
use the instrument properly and, when necessary, he must
undertake the task of compensating for the hardware limita-
tions.

The double-Purkinje-image eye-tracker used in thig

project is no exception to the above-mentioned rule. The




The eye-tracker is designed to operate within certain limits.

The DPIET, for example, has a limited anqular range over
which it can stay in tracking mode. Basically, this limi-
ﬁation is set by the instrument's need to track the first
Purkinje image and to track the fourth Purkinje image in
relation to the first. Anything that interferes with these
requirements will cause the instrument either to lose track
and so report or to lose track but continue to report it-
self in tracking mode (i.e., to track a spurious image).

It is the user's responsibility to arrange conditions which
will increase the probability that the instrument will stay
in the tracking mode and which will decrease the probability
of spurious "tracking" responses.

At the output end of the eye-tracker, the instrument
makes no provision for recognizing when the eye is "fixating"
or "saccading." Therefore, if this information is required
by the user, he will have to do the work necessary for ac-
complishing this further classification of the vertical and
horizontal eye-position data. And, if his need for this
information is constrained by time requirements, he may have
to devise means of accomplishing this classification at high
speed. Needless to say, as the performance reguirements are
increased, the difficulties proliferate.

In our biocybernetic project, we set as our goal the

achievement of eye-coupled control of scenic displays which

would permit a scenic tartet to be "stabilized" on a subiect's

retina in a specified location while allowing the subject a

7




certain amount of freedom in eye-movements. Furthermore,
the scenic content must be controllable on the basis of con-
tingent eye-position. That is, without restraining eye-
movements (within certain limits) we wanted to be able to
modify scenic content in a specified manner on the basis of
current eye-position and, if possible, on the basis of
anticipated eye-position. Whereas a contact lens-mounted
mirror can achieve image stabilization, the information con-
cerning eye-position is not made available for controlling
the scene-generator on the basis of eye-position; that is,
since the mirror moves with the eye, the image reflected

off the mirror will also move with the eye and therefore
image-position on the retina will not be influenced by eye-
movements. Thus, by means of this physical attachment of
the image source (mirror) to the eye and the anatomical
attachment of the retina to the eye globe, the image-retina
from moment to moment is virtually constant. This method
does not compensate for image-retina displacements; instead,
it eliminates their source by preventing the slippage from
occurring. This approach eliminates the need for tracking
and compensating (and for processing information essential
for successful tracking and compensation) but it requires

an attachment to the subject's eye, on the one hand, and
leaves the experimenter with the large and unsolved task of
assessing eye-position. And without eye-position informa-
tion it is not possible to control position-conditional
stimulation. Since we were primarily concerned with cybernetic

modeling of brain functions, and since the visual system does
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not solve its target-tracking problems by means of mechanical

coupling of the target to the eye globe, we decided to ap-
proach the problem of visual tracking in a manner roughly
analogous to that of the human visual system. That is, since
we know that the normal human subject tracks a visual target
by detecting and measuring image displacement and by making
compensatory movements to move the target to a preferred
retinal location, we decided to play a similar game, namely,
to monitor changes in eye-position and to move the stimulus
in a manner calculated to control the placement of the opti-
cal image on the retina regardless of the subject's eye-
movements. If successful in this endeavor, we expected to
reap certain rewards in the form of having a unique capacity
to either assist the brain in its tracking efforts or to
hamper it. On the one hand, by assisting the brain in its
tracking efforts we might be able to extend the performance
limits characteristic of the unaided visual system; on the
other hand, by interfering in well-defined ways with the
subject's tracking responses we might ke able to discover
some of the brain's tracking strategies which are not trans-
parent to ordinary methods of experimental analysis.

A secondary aim, but one that is essential to develop-
ing a sustained assault on the limits of biocybernetic con-
trol, was to devise a computerized eye-movement analyzing
and display-controlling system that would allow control
capabilit; to be continually expanded. By contrast, systems

which are inherently capable of doing only one thing at a
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time and which preclude the possibility of simultaneous

processing and control of more than one variable; this means
that in order to mount an attack on one front you must re-
treat on another front. For example, if you had only the
2-dimensional eye-tracker and the Cornsweet-Crane optometer,
you have to decide whether you wish to measure eye-position
or visual accommodation because you could only use one in-
strument at a time (although the optometer has some capacity
for measuring eye-position, it is rudimentary as compared
with the eye-tracking capacity of the eye-tracker). The
recently developed 3-dimensional eye-tracker (Crane and
Steele, unpublished report) overcomes this limitation and
permits the user to track horizontal and vertical eye-position
while simultaneously tracking accommodation. As we shall
see, this increase in the capacity of the instrument, while
it removes certain experimental limitations, poses many prob-
lems for the user who desires to exploit the possibilities

of the instrument.

THE DOUBLE-PURKINJE-IMAGE EYE-TRACKER (DPIET)

The two-dimensional eye-tracker developed at the Stan-
ford Research Institute (Cornsweet and Crane, 1973; Crane
and Steele, 1976) utilizes an advanced method of eye-tracking
which is based on servo-controlled tracking of two Purkinje
images, namely, the first Purkinje image and the fourth
Purkinje image, which move identically during translational
movements of the eye but which move differentially during

rotational movements of the eye.
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The virtual image resulting from light reflected at

the interface between the air and from the cornea is known
as the first Purkinje image. The second Purkinje image,
formed by light reflected at the interface between the rear
surface of the cornea and the aqueous humor of the anterior
chamber of the eye, is practically coincident with the first
Purkinje image. The third Purkinje image, a virtual image,
is formed by light reflected at the interface between the
front surface of the lens and the aqueous humor; this

image is much larger and more diffuse than the other images
and is formed, fortunately, in a plane which is remote from
the plane of the other Purkinje images. The fourth Purkinje
image is formed by light reflected at the interface between
the rear surface of the lens and the vitreous humor thatA
fills the posterior chamber of the eye globe. The rear sur-
face of the lens functions as a concave mirror; its reflected
light forms a real image of the light source.

The first and fourth Purkinje images are almost the
same size, and are formed in almost exactly the same plane.
Due to the fact that the change in the index of refraction
at the lens-vitreous interface is much smaller than that at
the air-cornea interface, the intensity of the fourth Purkinje
image is relatively weak, i.e., less than 1% of the intensity
of the first Purkinje image.

During translatory movement of the eye the first and
fourth Purkinje images move in the same direction and travel

the same distance (i.e., the distance between them does not
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change). However, when the eye rotates, the first and
fourth Purkinje images move in opposite directions, causing
them to move either closer together or farther apart. The
distance separating the first and fourth Purkinje images
thus provides a basis for measuring the angular rotation

of the eye without the error contributed by translatory
movements of the eye.

The 2-dimensional double-~-Purkinje-image eye-tracker
provides two separate output voltages (continuous) whose
magnitudes are proportional to the horizontal and vertical
components of the distance separating the first and fourth
Purkinje images formed in the eye in response to the input
of an infrared light beam. This 2-dimensional DPIET pro-
vides continuous monitoring of the angular position of the
subject's eye with a high level of accuracy and without the
need for mechanical contact with the eye. Since the eye-
tracker operates in the infrared, it does not interfere with
normal vision.

The double-Purkinje-image eye-tracker (DPIET) is
limited in range by several factors. First, when the eye
rotates toward the infrared input axis (i.e., to the right),
the horizontal distance between the first and fourth Purkinje
images decreases. When light from either the first or third
Purkinje images invades the photocell which is supposed to
see only the fourth Purkinje image, it becomes impossible to
continue to track the fourth Purkinje image. Second, when

the eye rotates away from the infrared input axis, the
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horizontal distance between the first and fourth Purkinie
images increases. Tracking in this direction becomes impos-
sible when the iris cuts off the fourth Purkinje image.
Third, vertical rotation of the eye causes corresponding
vertical separation of the first and fourth Purkinje imacges;
tracking of vertical rotation ceases when the iris cuts off
the fourth Purkinje image. In brief, the range of the DPIET
is limited by the pupil boundary in rotational directions
away from the infrared input axis and by lights from the
first and third Purkinje images confusing the fourth Purkinije
image detector when they move too close to the fourth Pur-
kinje image as the eye rotates in the direction of the infra-
red input axis. From this it will be evident that pupil

size is an important limiter of tracking range; the larger
the pupil size, the greater the tracking range in all direc-
tions except toward the input axis. Therefore, since re-
duced ambient light favors a larger pupillary size, it also
increases the tracking range of the DPIET.

To minimize tracking loss during eye blinks, the gain
of each servo motor driver is sharply reduced during each
blink. Blinks are detected by summing the outputs from the
four quadrants of the first Purkinje photodetector. This
sum, which is nominally independent of eye direction, is
constant except during eye blinks; during a blink this sum
will increase or decrease substantially depending upon the
amount of light reflected from the eyelid. The blink de-

tection circuit indicates that a blink is in progress (output
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voltage change) when the sum is outside the adjustable upper

and lower limit values. To minimize tracking loss during
eye blinks (that is, to prevent the tracking servo motors
from moving arbitrarily) the gains of the servo motors are
sharply reduced during each blink. If the post-blink eye-
position does not differ greatly from the pre-blink eye-
position, the servo controls can quickly resume tracking
their respective Purkinje images when the eyelid opens.

Our updated model of the DPIET (Crane and Steele, un-
published report) is designed to tolerate up to one centi-
meter of variation in eye position in horizontal, vertical,
and axial dimensions. The axial tolerance is achieved by
incorporating automatic focusing. The horizontal-vertical
tolerance is achieved by making the input light path track
eye position automatically.

The first and fourth Purkinje image trackers are both
provided with output signals indicating when they are un-
locked (i.e., out of tracking mode). These signals provide
a convenient means of assessing eye-tracking records. We
have incorporated them into our system for mapping the track-

able perimeter.

PERIMETER

In order to exploit the full range of the eye-tracker
it is necessary to measure the limits of eye-tracking in
every direction. We have developed a routine for automatic

mapping of the trackable perimeter. This routine, called
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PERIMETER, allows the experimenter to select up to 24 radial

lines arranged around a central field point. The subject

is instructed to track the movement of the CRT beam as it
moves centrifugally at a constant speed (selectable by ex-
perimenter) along one of the radial lines. The peripheral
tracking limit is marked when the fourth Purkinje tracker
unlocks. Then the subject returns to the central fixation
point and the target beam moves out along another of the
radial lines. And so forth. See Fig. la. When all of the
selected radii have been tracked to the limit of track-
ability, the program then connects the adjacent radial limits

to form a trackable perimeter. Each of the radial limits

is measured to the nearest tenth of a degree and this value
is displayed on the graphic perimeter. See Fig. 1lb.

This method of mapping the trackable perimeter allows
the experimenter to adjust his stimulus materials so that
they fall within the trackable limits. This means (in the
digital domain) that a picture can be offset vertically and
horizontally (with respect to the central fixation point)
until it is centered in the trackable space and that the
scale of the picture can be increased so as to fill the
trackable area or reduced so as to fit inside the trackable
area. Without accurate measurements of the trackable peri-
meter, the experimenter is inclined to make two types of
error: first, in order to keep his picture well inside the
tracking range of the eye-tracker, he may make his pictures
smaller than necessary, an excessively costly form of
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FIGURE la. Perimetry data obtained from subject J.N. The eye-
tracker monitors the subject's eye as it pursues a target that
moves outward along each of the radii. The star marks the point

at which the eye-tracker loses track, i.e., the trackable limit.

FIGURE 1b, The perimeter of trackability automatically computed

from the data in Fig. la. The circles are spaced 5 degrees apart,
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insurance against losing track of eye movements. Second,

he may make his picture so large that parts of it lie out-
side the perimeter and eye movements directed at those parts
L are untrackable. On the one hand, it is desirable to make

the picture as large as possible in order to obtain a maxi-

mum angular separation between features; on the other hand,
such exéansion runs the risk of making parts of the picture
fall outside the range of trackability. It is a case of

the perennial trade-off between field size and resolution.
Both the human eye and the eye-tracking machine have limited

fields and limited resolving powers.

LINEARIZATION OF EYE-TRACKER ESTIMATES

We notices that the response of the eye-tracker to
the eye-movements of a real eye was subject to nonlinear
distortions, i.e., the distortions were different in dif-
ferent parts of the trackable space. Mind you, these non-
linearities are not large when compared with other eye-tracking
devices but they significantly limit the functional resolving
power of the eye-tracker for an extended range of movements.
The actual human eye is, after all, not the idealized form
anticipated in the design of the hardware. The distortions
observed are nonlinear in the sense that no single set of
vertical and horizontal gain and offset adjustments will
correct the errors in all parts of trackable space. What is
required is local control of gains and offsets, i.e., inde-
pendent gain and offset controls for each part of the track-

able space. By linearization of these nonlinear distortions
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we could expect to extend the spatial resolving power of
our eye-tracking system.

For the above-mentioned purpose we have implemented
an adaptive filtering scheme to obtain the required cor-
rections. In our procedure we ask the subject to fixate
sequentially each calibration dot in a matrix of 11 x 11
dots; each calibration dot is located two degrees away from
its nearest vertical and horizontal neighbors. Actually,
the computer first displays the entire matrix of calibra-
tion dots (in the memory mode of the CRT) and then brightens
the particular dot that the subject is currently required to
fixate. When the subject is satisfied with his fixation of
that dot, he presses a button which causes the computer to
sample the X and Y outputs of the eye-tracker. Then the
computer immediately brightens the next dot to be fixated,
and so forth. It is assumed that the subject is able to
properly fixate the calibration dot and that an adequate
selected sample of the tracker output will properly estimate
this fixation, but subject to the nonlinear distortions we
are now considering. When the subject has completed his
fixation of all of the calibration dots, the computer immedi-
ately displays the matrix of calibration dots and superimposes
the fixation points as estimated by the eye-tracker. The
task of the corrective filter is to adjust the eye-tracker
estimates so as to minimize the discrepancies between the
known fixation points (i.e., the calibration dots) and the
corresponding eye-tracker estimates.
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The developing filters are graphically displayed in

Figs. 2a and 2b. Figure la illustrates the status of the
filters prior to any adaption. The X-filter surface is lo- ﬁ
cated in the lower left portion of these figures; the Y-
filter, in the lower right portion. The filter is repre-
sented by a matrix of 21 x 21 dots (twice the density of
the calibration dots) and is depicted as lying in a hori- i
zontal plane. This plane represents zero correction; dis-
placements above this plane represent corrective additions;
displacements below this plane, corrective subtractions.

The upper left portions of Figs. 2a and 2b show the cali-
bration points (11 x 11), the eye-tracker estimates of fixa-
tions, and ellipses indicative of the magnitude of the error.
In the upper right portions of these figures are displayed
three useful statistics of error; these are updated after
each adaptive iteration (an adaptive scan of all the data
samples). The uppermost statistic is the maximum error ex-
pressed as a percentage of the viewing angle (in this case
it is 20 degrees). The second statistic is the mean square
error expressed as a percentage of the viewing angle. The
third statistic is similar to the second but expressed in
terms of CRT (scope) display units (there being 1024 units
across the display). Figure 2b illustrates the condition of
these displays and statistics after the adaptive filtering
process has greatly reduced the nonlinear errors and the

filter surfaces have approximated their asymptotic values.
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Calibration data and adaptive filter surfaces after adaptive correction
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These filters are somewhat analogous to optical lenses
designed to correct for astigmatic visual distortions. We
have observed that the filter characteristics cobtained on
different days from the same subject are surprisingly simi-
lar. Stated otherwise, this means that the filters are
quasi-stationary or relatively invariant with changes in
time. Thus, rather than starting the calibration process
"from scratch" on each separate experimental occasion, it
is possible to install a previously—generéted filter, ad-
just the offsets of its central point, and adapt from there.
In the terminology of control theory, this usage of relevant
prior information is called a feedforward operation because
it allows the system to advance to the "ball park" of the
optimal filter. Such exploitation of stationary parameters
of a measurement system provides for greater convenience
and greater speed in the operation of the system. In some
cases exploitation of these properties is essential to suc-

cessful tracking.

SEER: ROUTINES FOR THE CREATION, EDITING, STORAGE, AND

DISPLAY OF DIGITAL PICTURES

In order to gain the full advantages that derive from
having a real-time monitor of eye-direction it is desirable
to have access to computer-generated visual targets. Then
if the computer knows where the eye is pointed, it can move
the target into some specified relation to the eye. Because
of the great speed of the computer, the visual effect is
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equivalent to physically coupling the optical image to the
retina. Yet, unlike stabilized images produced by optical
systems physically attached to the eye, the digital image
is subject to highly controlled manipulation. However, the
generation and management of non-trivial digital pictures
can be a rather complex matter.

Conversion from analog scenes to digital strings is
facilitated by the use of a GRAFPEN system which employs
an ultrasound-emitting pen tip and a drawing surface bordered
at the top and the left side by ultrasound sensor strips.

The GRAFPEN system outputs X and Y voltages which are pro-
portional to horizontal and vertical positions of the graf-
pen. These voltages pass to the A/D converters of the PDP-15
computer. Although it might seem that this arrangement would
solve the problem of converting analog scenes into digital
number strings, it proves to be awkward and inefficient.

As our needs became apparent, we developed an increasinaly
elaborate set of routines for making and handling digital
pictures. We have used the acronym SEER (Stanford Eye Ex-
periment Routines) to designate the scftware developed for
this purpose.

The work of making and using digital pictures can be
divided conveniently into three parts. First, there is the
work of the copyist who has to trace the analog piéturo con-
tours with the grafpen and control the computer's sampling,
labelling, and storing operations. Second, there is the

'

task of assembling contour segments into a "picture," editing
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it, naming it, and storing it as an entity. Third, there is
the task of assembling a sequence of pictures for an experi-
ment. The various SEER routines are designed to facilitate
this work. The transfer of these digital pictures from one
type of storage to another must also be provided; that is,
the digital points have to be transferred from core memory
to fixed-head disk, or from fixed-head disk to DECtape or
9-track digital tape, or from fixed-head disk to movable-
head disk, or in the reverse direction. The various SEER
routines are designed to make these transfers relatively
easy.

In most of these activities it is desirable that the
experimenter be able to see what he is working with. There-
fore, we have provided extensive display capabilities.

Now, to consider the work of the copyist: the scenic
material to be copied is rear-projected onto the ground glass
surface of the grafpen drawing area. The copyist must then
use his eyes to guide his hand as it traces a selected con-
tour with the tip of the grafpen. Since this form of copy-
ing is tedious at best, it is convenient to arrange the sys-
tem so that he has flexible command of the computer. The
copyist's dialogue with the computer is carried out through
the use of the grafpen. A computer command "menu" is pro-
vided in the lower right-hand corner of the grafpen drawing
surface. By touching the grafpen to the various designated

areas, the copyist can request that the computer give him an

element number; the computer's selected number is then displayed



by the computer on a display CRT located near the drawing
surface. In the MENU-mode the copyist can draw, erase,
label, and store up to 1000 picture segments at a time.

We shall not elaborate on the available menu commandés
other than to mention that in addition to the more obvious
computer commands we have provided some "geometrical assis-
tance" commands which allow the copyist to enlist computer
assistance in drawing straight lines, circles, arcs, and
rectangles. Also, to economize on digital storage and to
obtain an approximately constant density of sample points
from a picture contour, there is a spatial sampling routine
which stores a new data-point only if it is located scme
specified distance away from the previously-stored data-
point.

Equalizing the sample-density of the picture contours
not only economizes on storage but it lays the foundation
for meaningful manipulation of contour density. Thus, for
example, it is possible to get reasonably good tracings by
displaying every other point, or some suitable fixed ratio
of points. Or, if you wish to generate a moving target
point for the eye to follow, a fixed rate of display of the
points will appear to speed up in approaching curves and
corners and will appear to slow down in the straight sec-
tions. By increasing the sample density in curves and
corners it is possible to equalize the apparent speed of
the moving light beam on the display CRT. Since we could

not arrive at any generally satisfactory formula that would




produce subjective equality of trace-speed, we hit upon an
empirical solution whereby the editor is permitted to select
any particular segment by marking two limiting points on the
contour; then he can draw with the grafpen whatever function
seems reasonable and the density-adjusting routine will in-
crease or decrease the sample density along that segment in
accordance with the selected function. Then the editor can
request that the segment be traced on the CRT using the ad-
justed density. If he is dissatisfied with the result, he
can modify the density function and see if that produces a
better subjective effect; if he is satisfied with the re-
sult, he can move on to the next segment. Finally, we should
mention that the equal-density contour drawings provide the
basis for generating the spatial density matrices for these
pictures (to be described later).

Having collected a set of picture segments, the copyist
can then proceed with the task of assembling "pictures" from
picture-segments. He can edit his picture in many ways.

For instance, he can magnify it or minify it, he can offset

it on horizontal and vertical axes, and he can rotate it (yaw,
pitch, roll). Then he can give this edited version of the
picture a label before storing it in one of several convenient
places.

Finally, he can assemble a set of "pictures" into an
experimental sequence, specifying various display parameters
for the experiment. With these manipulative capabilities

it is possible to utilize digital pictures much the way that
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one would use a set of photographic slides and a projector.
However, being in the digital domain, the digital picture
can be manipulated by the computer in some extraordinary
ways. On the negative side, there is the restriction (in
our set-up, at least) to monochromatic contour-pictures or
"cartoons."

As a future development, we foresee the coordination
of visually-rich color T.V.-type of display with the sche-
matic contour-pictures, allowing photographs to be overlaid

by corresponding schematics on a frame-by-frame basis.

FIXATION-CONDITIONAL STIMULUS PRESENTATION

In many experiments, the subject is asked to fixate a
centrally located target as a pre-condition for the exposure
of the stimulus pattern. From the point of view of experi-
mental design, fixation of the central point is a stimulus
parameter in the sense that the specified fixation arranges
for consistent retinal placement of the stimulus pattern.
Yet it is seldom that any precautions are taken to monitor
or control this parameter other than to instruct the subject
to fixate and expect his cooperation. A more rigorous ap-
proach would be to arrange for electronic monitorinag of eye-
pointing and for electronic circﬁitry for making stimulus
nresentation conditional upon fixating within prescribed
spatial boundaries for some prescribed period of time. This
arrangement has the advantage that the stimulus exposure can

be extended as long as the subject keeps his eye within the




prescribed spatial boundaries; the alternative, of course,
is to employ tachistoscopic exposures which are sufficiently
brief as to preclude significant reactive eye-movements. I
computerized fixation-conditional stimulus controller is
illustrated in Figs. 3 and 4. This is actually the simplest
use of a more general system of visual scanpath analysis

which is described below.

REAL-TIME SCANPATH ANALYSIS

Automatic methods for the off-line analysis of scan-
paths are described in Shah (1977). We shall now describe
a real-time method for the analysis of scanpaths. It is evi-
dent that an effective real-time scanpath analyzer is an
essential development in the process of implementing cyber-
netic models for the prediction and control of ongoing eye-
pointing behavior.

This computer program was first implemented at Ames
Research Center on an SEL-840 computer which has an Evans
and Sutherland display system. Two large CRTs are utilized:
(1) a monitor scope on which are displayed the various
analyses that are of interest to the experimenter, and (2)

a stimulus display CRT which is viewed by the experimental
subject. During the past year we have developed an equi-
valent real-time scanpath program for our PDP-15/76 at Stan-
ford.

The subject is seated in front of the stimulus CRT,
his head stabilized by a bitebar, with the distance between
the eye and the CRT surface adjusted so that 12 inches in
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either the vertical or. horizontal dimension on the scope

corresponds to 20° of visual angle. His right eye is moni-
tored by a 2-dimensional eye-tracker which provides output
voltages proportional to horizontal and vertical eye-
direction.

Following completion of suitable calibration proce-
dures, the subject is presented with a cartoon-type stimu-
lus (out of digital storage) on his display scope and in-
structed to examine it freely for a specified number of
seconds or for a specified number of fixations, after which
the cartoon disappears and the central fixation spot is
restored. While the subject is examining the cartoon, the
X and Y voltages from the eye monitor are entered into X and
Y voltage distributions located below and to the left, res-
pectively, of the fixation circle (see Fig. 3). The entries
in these distributions are cumulated in accordance with a
sliding time-window (the width of the window being speci-
fied in milliseconds by the experimenter). The peak of each
distribution (X and Y) is treated as the best estimate of
the eye-pointing during the time constant characterizing
the width of the sliding window. This X,Y location is made
by the center of a circle (solid line) the radius of which
is controllable by the experimenter. We sometimes refer to
this circle as a "fixation circle" or as a "target circle"
depending upon the experimental use being made of it. If we
set minimum amplitude criteria for the distribution peaks,

swell time" or "spatial

we have a basis for monitoring the
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invariance" as a function of time, this is a reasonably
effective way of defining the beginning of each fixation.
The method for defining the end of a fixation is described
in the next paragraph.

A second circle, sharing the same center as the tar-
get circle, has an independently variable radius which is
equal to or greater than that of the target circle. This
circle, which appears on the monitor scope as a dotted line
(see Fig. 3), is used to set a spatial variance limit around
the target circle. When the instantaneous eye-position ex-
ceeds the perimeter of the variance circle, it is assumed
that the eye is making a saccadic movement, or at least, that
it is moving sufficiently far away that the information
accumulated in the distributions is irrelevant, so the dis-
tributions are re-set to zero and the existing target circle
vanishes. When a new fixation is detected, a new target
circle and a new variance circle will appear. And so forth.

Another important feature of this program is the arrange-
ment whereby if the instantaneous eye position (the small
square inside the target circle in Fig. 3) remains inside
the target circle for a specified nunber of milliseconds
(determined by the experimenter), a voltage appears on an
appropriate analog output line and the word ON is displaved
on the monitor scope until the instantaneous eye position
travels outside the target circle; when the output voltage
goes to ground the word OFF replaces the word ON (see Fig.

4).
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This ON/OFF feature provides the basis for the fixation-
conditional visual stimulation described earlier. The real-
time scanpath program provides for the collection of up to
100 fixation-locations before it must pause momentarily to

transfer these data to another storage area. In the scan-

path display, a cross appears at each fixation-location and
each cross is numbered in accordance with its ordinal posi-
tion in the scanpath.

Figure S5a and Fig. 5b contain a cartoon of a paint-
ing which depicts Judith with the head of Holofernes. In
Fig. 5a the current location of the point-of-regard is marked
by the small circle at the tip of Holofernes' nose. This
eye-position is indicated by the X-probability and Y-probability
distributions located below and to the left, respectively.
When these probability distributions reach some selected peak
amplitude, the computer recognizes that location as a fixa-
tion and deposits a small cross in the display to mark that
spot. Of course, information concerning the location, dura-
tion, and scanpath number is stored for subsequent use.

We have employed a number of different techniques for
the analysis of scanpath data. One of the current develop-
ments is illustrated in Figs. 6a and 6b. Although the usual
endpoint of fixation-detections is reached when fixation

locations are superimposed on the scenic target, it is possi-

ble to consider more complex transforms. In this approach,
we have tried to give recognition to the fact that some infor-
mation is processed through every part of the retina, not just
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FIGURE 6a. Three-dimensional visual contact probabilily matrix based on the
fixation data shown in iy, Sb. The picture plane i1s horvizontal .,
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FIGURE 7

The iso-contours of Fig. G6b superimposed on the picture of Judith with the
head of lolofernes. Obviously, the spread ol visual contact around the
centers of attention will depend upon the shape of the contact probability
weights entered around ecach fixation point. This system is flexible in that
it allows the experimenter to select his weighting pattern on whatever basis
he deems advisable, Presumably, the pattern of contact probability changos
depending upon environmental illumination, subjcet motivation, ete. We would
suppose that the retinal acuity function provides good basic weighting which
could be modified on the basis of other considerations,
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through the foveal portion. In this case we have made a
weighted entry into every portion of the picture space sur-
rounding the fixation point, based upon some acuity estimate.
The exact form of the acuity weighting is immaterial for the
current exercise; the program permits the entry of any speci-
fied set of weights. What this form of display helps to
formulate is some concept which we might call "visual con-
tact probability." Figure 6b illustrates a sample probability
matrix (simulated 3-dimensional plot). Figure 6a shows
(enlarged) the equal amplitude transform (or "geophysical
map") of the data in Fig. 6b. Figure 7 1illustrates such an
equal amplitude transform of the contact probability matrix
for a set of fixation obtained from a subject who was given

an opportunity to examine this scene. The equal amplitude
contours are projected onto the cartoon (Judith with the

head of Holofernes). /Note: the lower right set of contours--
off the picture-~-resulted from the fact that the subject left
the bitebar before sampling was terminated; that "fixation"

is the default location of the tracking system in the absence
of a trackable eye./ A dynamic version of this contact
probability display provides a view of the contact probability
for a relatively narrow sliding window (of time) but this

display is more suited to motion picture representation.

MODELING SACCADIC EYE-MOVEMENTS

A number of models have been proposed in the litera-
ture for the saccadic control system. While there is a
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general agreement regarding the various characteristics
‘discussed above, there is no single model which explains
them all.

A natural division of the system is to have a controller
driving a plant. The controller is the brain with the tarcet
signal as input. The nerve signals produced by this controller
drive the plant which is composed of the eye muscle assembly.
Models have been. proposed for both parts. Westheimer (1959)
suggested a second-order linear model for the plant. When
such a system is driven by a step input, a saccade-like tra-
jectory results. In Westheimer's model, the plant is under-
damped. The model parameters have no physiclogical signifi-
cance. Yarbus (1967) suggested that the saccadic velocity
curve is sinusoidal. This, however, is an over-simplification.
Based on the 200 ms reaction time to a pulse target movement,
Young and Stark (1962) proposed a sampled data control system
which samples the error and then executes a correcting move-
ment 200 ms later. The target movement in this interval
does not cause this initial response to change.

The sampled data model was presented by Young and
Stark (1962) and analyzed in detail by Young (1962). It is
an elegant application of classical control theory to the
study of a physiological system. For the plant, this model
used Westheimer's (1959) underdamped second-order system.

The model is adequate for simple saccadic responses but can-
not predict the correct answer to a pulse-step target. The

controller has to be more complex to produce the variety of
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responses 6bserved for different inputs. Actually, as
Robinson (1973) pointed out, the plant is overdamped and
needs a pulse superimposed on a step (a pulse-step) as
input to produce the observed saccadic trajectory. Robin-
son found evidence that the force applied to the extraocular
muscles during a saccade is actually a pulse-step. He used
data gained through external loading on the eyeball as well
as through experiments under normal conditions to determine
the parameters of the second-order plant model. Robinson
(1973) has suggested a series of models all using the same
plant but with controllers of increasing complexity.

Some of the shortcomings of Robinson's models have
been pointed out by Cook and Stark (1967). To understand
these, we must refer to some neurophysiological conceptions
of the saccadic system. Very briefly, the signals from the
retina reach area 17 of the occipital lobe via the optic
nerve and the lateral geniculate body. The error signal is
probably forméd in areas 18 and 19 and processed to form the
saccadic motors command signal in the frontal eye fields
(Fuchs, 1971). This command signal ultimately reaches the
oculomotor nuclei. The force applied to the eyeball is a
result of the firing of the oculomotor nuclei and the action
of the extraocular nuscles. Robinson pointed out that the
firing pattern of these nuclei follows a pulse-step, with a

high firing rate during the saccade which settles down to

a steady value after the saccade. To produce this pulse-step,

he proposed that the error signal drives a pulse generator
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which produces a pulse, the area under which equals the de-

sired saccade amplitude. This pulse is fed to a network
consisting of a neural integrator in parallel with a feed-
forward path (the medial longitudinal fasciculus). The
output of this network represents the firing rate of the
oculomotor neurons. It then drives the second-order over-
damped plant (i.e,, the extraocular muscles and attached
eyeball) to produce the saccadic eye-movement.

There is considerable physiological evidence indicating
the presence of a neural integrator. Robinson (1972) has
combined the vestibulo-ocular system, the smooth pursuit
system, the saccadic system, and the vergence system into a
single model sharing a neural integrator and a feed-forward
path. Also as pointed out above, the plant parameters used
in his model were derived from physiological experiments.
Thus, it is clear that Robinson's model and its parameters
have considerable physiological significance, which is
essential in a model that purports to explain a biological
system.

Robinson's model does have some limitations, however.
The eyeball is controlled by 3 pairs of extraocular muscles
used for rotation about the X, Y, and Z axes respectively.
For example, during a horizontal saccade, one muscle (the
agonist) shortens in response to an increase in neural
activity whereas the other muscle (the antagonist) lengthens
in response to co-responding decrease in neural activity.

Cook and Stark (1967) have pointed out that Robinson does
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not describe what portion of the driving force is attributed
to the agonist and what portion to the antagonist. The
model is incomplete in that sense. They also reported that
the velocity curves of Robinson's model do not agree with
experimental data.

By considering muscle dynamics and the different forces
applied to the agonist and the antagonist muscles, Cook and
Stark (1967) proposed a nonlinear model for the plant. The
model parameters were determined from physiological experi-
ments. They also published comparisons between (a) model-
simulated eye-position and velocity curves and (b) experi-
mental data (Cook and Stark, 1968). Clark and Stark (1975)
reported that this model produces time-optimal responses.

In its full form, the model proposed by Cook and Stark
is a sixth-order nonlinear system and is quite complex; thus

it is clear that the saccadic system cannot be fully repre-

sented by any simple model. The separation into a contr

and a plant is itself a simplification which may not be fully
correct. For full understanding of the saccadic system,

is necessary to use more and more intricate model

will continue to be developed as more becoms
the system. In general, how complex the
pends on its application. Our interest

predicting saccadic eye movements on re

the input-output characteristics of the systen
interest to us than the exact components. We have ¢
priority to computational feasibility for real-time monit




and prediction. Because Robinson's model is founded on

considerable neurophysiological evidence and because of its
relative simplicity, we have used it as a starting point
for our model development. We have improved upon his model
so that we obtain better fit of the mcdel responses with
experimental data. Our model parameters are estimated by
curve fitting techniques. As a result, we have developed

a model that, although it may not be completely sound
physiologically, does in fact reproduce the input-output
behavior of the saccadic system with sufficient accuracy to
be adequate for the purpose of monitoring and prediction.

Let us look at some of the shortcomings of Robinson's
model and discuss our modification for remedying the situ-
ation. Firstly, it is quite clear that the saccadic system
is a nonlinear system, as described before; yet we are using
a linear model. This use is justified partly by the fact
that the controller, which generates the input to the plant
in response to the visual stimulus, is nonlinear, and partly
by the need for computational simplicity. The magnitude of
the visual stimulus affects both the height and width of
the pulse input to the plant so that even though the model
itself is linear, velocity saturation and dependence of
saccade duration on amplitude are observed. Within the
plant itself, the nonlinear muscle dynamics have been approxi-
mated by a linear system.

Cook and Stark (1967) pointed out that the velocity
curves produced by Robinson's model did not match experimentally-
observed velocity curves. In addition, the model as initially
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presented does not produce overshoots or undershoots in the
saccade. Robinson (1973) suggested a slight change to one

of the time constants to produce the desired response. How-
ever, we found that such a modification still does nct match
the observed overshoots. This is a serious defect, particu-
larly since we are interested in the input-output character-
istics and not the physiology per se. We have made an impor-
tant modification to Robinson's model by changing the form

of the input to the plant. Interestingly enough, this is

the form of the input that would result from Cook and Stark's
model if we ignored the differences between the agonist and
the antagonist muscles and simply added (algebraically) the
forces on the two. This change enables us to accurately fit
the model generated position and velocity responses to the
experimentally-observed ones for different types of saccades.
This improves upon Robinson's model by removing its main
distraction.

Until now, most models of the saccadic system have
attempted to explain only the gross behavior of the system.
Essentially, that means a study of the static behavior of
the system, with the primary emphasis being on whether or
not a saccade will be produced in response to a specific
stimulus. The detailed dynamic characteristics of the sac-
cade have been of secondary importance. Only Cook and Stark
have attempted to fit model-generated responses to actual
ones. We have essentially used an engineering approach to
study saccadic movements. By using the methods of parameter
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estimation and prediction we have produced a model which 1s

remarkably accurate in its tracking and prediction of sac-
cadic eye movements. A detailed account of this model is
given in a Ph.D. dissertation by Arun Shah (1977), a copy of

which is submitted with this report.




POTENTIAL

Although phase analysis of the EEG alpha rhythm has
interested a number of neuroscientists, there are, to our

knowledge, no published accounts of successful systematic

analyses which relate alpha phase contingency to the tradi-
tional average visual evoked potential (AVEP). One approach
to the analysis of alpha phase contingency effects which has
been adopted by a number of investigators (Walter et al., 1946;
Walter and Walter, 1949; Turton, 1952; Bekkering and Storm van
Leeuwen, 1954; Bechtereva and Usov, 1960; Callaway and Yeager,
1960; Callaway, 1961; Bechtereva and Zontov, 1962; Dustman and
Beck, 1965) has been to use what we shall call "phase condi-
tional stimulation techniques" which simplify problems in

the collection and management of data by arranging to stimu- -H
late only at specified alpha phases. This approach has the
advantage of requiring relatively modest instrumentation
inasmuch as only one class of phase contingent sample-functions T
is collected and averaged at a time. Intermediate approaches

which provide for the analysis of more than one phase con-

tingency class have been developed by Callaway and Layne
(1964) who arranged to stimulate and collect data for 10 dif-

ferent ranges of alpha phase, and by Rémond and Lesévre (1967)

who investigated 4 different ranges of alpha phase. The




disadvantage of these phase conditional stimulation tech-
niques stems primarily from the limitations imposed by the
demand for real-time monitoring of the phase variable and

for real-time decisions about delivering or withholding
stimuli. But possibly of greater importance is the fac!

that the abandonment of the unconditional or noncontingent
pattern of stimulation in favor of the phase conditional
pattern also resulted in the production of data which are not
easily and directly compared with traditional AVER data.

In contrast with these approaches, we (Anliker and
Floyd, 1977a) have elected to expand the traditional AVEP
analysis by implementing a completely off-line phase contin-
gency analysis of the sample-functions from which an AVEF
can be extracted. In this way, we gain certain fairly ob-
vious analytical advantages from the use of relatively power-
ful, but time-consuming, digital filtering and classification
algorithms. And we obtain results which can be directly
compared with the AVEP. Nevertheless, we should point out
that our approach has one major drawback, viz., it entails

the acceptance of a relatively large computational burder.

EXPERIMENTAL PROCEDURE

The EEG data were collected from 2 healthy normal young
men who exhibited prominent alpha rhythms. Electrode coup-

lings were "monopolar," the active electrode being placed
over the occipital region of the scalp (2 cm from the midline
and 2 cm above the inion) and the inactive reference derived
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from yoked electrodes clipped to the right and left ear
lobes. The ground electrode was placed over the mastcid
process. Right and left occipital responses were recorded
simultaneously through amplifiers in a Grass model 78 poly-
graph onto separate channels of a Honeywell 7600 instrumen-
tation tape recorder. A Grass PS-2 photostimulator, located
12 in. in front of the nasion, was used to deliver flashes
(10 msec duration at intensity 4) through the subject's
closed eyelids. The flash tube was housed in a sound-
attenuating chamber, and white noise was used to mask any
flash-tube sounds that might have escaped the attenuator.

In addition, the subhject was kept both alert and distracted
from the flash stimuli by being engaged in a two-way conver-
sation with a laboratory assistant throughout the experi-
mental session.

Digital data processing in this study was carried out
on an SEL-840 computer. Prior to the experiment, the com-
puter was programmed to generate a sequerce of intervals
with values between 2 sec and 8 sec selected from a table
of random permutations. This variation in interval size
was included to minimize the influence of expectancy which
might develop from fixed intervals of stimulus presentation
and to counteract the possibility that some lingering stimulus-
locked components in the EEG might contaminate the phase-
trigger time relationship in the stimulus-OFF control trials.
These time intervals were recorded on analog tape alonag with
flash commands (stimulus-ON) and trigger commands (stimulus-~OFF)
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in separate tape channels. The beginning of each interval
had associated with it either a stimulus command or a trig-
ger command. Flash and no-flash trials (i.e., intervals)
occurred in simple alternation. This tape was then used to
control the stimulus generator during the experiments and

to provide signals representing experimental parameters to
be recorded onto a second analog recorder along with the EEG
signals. These analog recordings were then digitized at
2-msec intervals and stored on digital tape to await further
analysis.

Obviously, if one wishes to study alpha phase, it is
of great importance that care be exercised to avoid phase
distortion in the processing of the EEGC signals. Therefcre,
the digitized EEG data were processed using a nonrecursive
phase-distortionless digital filter. The parameters of this
transversal filter were (a) bandpass of 6.0 to 18.0 Hz;

(b) length of 151 samples at 2 msec per sample; and (c)
Hamming weighting. The delay added to the EEG data from the
action of this noncausal filter was also introduced into the
stimulus channel and the trigger channel to preserve the
original time relationship between stimulus commands (or
trigger commands) and the EFEG time functions.

In subsequent discussions we shall refer to these
digital data in terms of sample~epochs or sample-functions

corresponding to the various trials. The phrase "stimulus-ON

sample-function" will refer to a sample-epoch that begins with

a stimulus (flash) and is sampled regularly at 2-msec intervals.
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The phrase "stimulus-OFF sample-function" will refer to a
similar epoch that begins with a trigger only (indicating
that the stimulus was "C F," i.e., omitted).

In tl.. resent work we utilize the quadrature defini-
tion of phase as originally introduced by Weaver (1956) and
applied by Ein-Gal and Lai (1973) to EEG recordings sup-
plied by Anliker. Briefly, the quadrature procedure is as
follows: a narrowband time function can be described in
terms of frequency, amplitude, and phase values. If the
frequency can be specified (either as a constant or a
tracked variable), it is possible through quadrature analy-
sis to describe the instantaneous phase and amplitude of
the input signal with reference to coherent sine and cosine
reference waves of the same mean frequency as the signal.
In our experiments the mean alpha fregquency was obtained
from autocorrelation analysis of the EEG data, the dominant
period of the correlogram being taken as the best estimate
of the mean alpha period. Quadrature analysis, using this
frequency, compares the variable signal with sine and cosine
coherent references of the defined frequency and yields an
in-phase component and a quadrature component. These two
components are used to estimate the amplitude and the phase
of the input sample-functions. In the present application,
we have made the further specification that the positive
peak of the cosine reference wave always coincides with the

beginning (time zero) of each sample-function, i.e., coincides
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with the moment at which either a stimulus or a trigger-

only control is activated. The contingent phase of a par-

ticular sample-function is defined in terms of the phase
contingency range, of which there are 20 equal 18° ranges,

within which the quadrature value of the sample-function

falls at time zero. Based upon this quadrature method for
the classification of alpha phase, we have developed and
applied two forms of phase contingent signal analysis which
we shall call (1) phase contingent averaging and (2) phase

contingent expansion.

RESULTS AND DISCUSSION

It is instructive to look first at the stimulus-OFF
(i.e., trigger-only) phase contingent averages in Figs. P1
and P2. It will be observed that the phase contingent
averages are all quite substantial nonzero functions. They
are, furthermore, all quite similar except for the phase
differences at time zero. The peaks of the amplitude en-
velopes of these phase contingent averages are all located
at time zero. This is to be expected because these phase
contingent averages are equivalent to the triggered averaages
of sato et al. (1962) and the triggered correlations of Boer
and Kuyper (1968). Consequently, these phase contingent
averages partake of certain basic features of the auto-
correlogram. For instance, there is a characteristic fall-
off in the amplitude with increasing time distance from

time zero. This is accounted for in our phase-incoherence
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FIGURE P.1.

Phase contingent expansions of AVEP data from subject K.L. The expansion of
stimulus-OFF (trigger but no stimulus) data is on the left side of the figure,
the stimulus-ON expansion, on the right side. The various contingent averages
are stacked as a vertical series, with contingency 1 on the bottom and con-
tingency 20 at the top. The Grand Mean, or mean of the contingent mecans,
equivalent to the noncontingent AVEP, is located immediately above contingency

20 and is indicated by a heavier line. The stimulus (or trigger) time 1 showt
at the top. The average number of sample-functions in each contingent average
is 40,
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Phase contingent expansions of AVEP data from subject L.H. The expansion of
stimulus-OFF (trigger but no stimulus) data is on the left side of the figure
the stimulus-ON expansion, on the right side. The various contingent average:
are stacked as a vertical series beginning with contingency 1 on the bott
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gent AVEP, is located immediately above contingency 20 and is indicated by
heavier line. The stimulus (or trigger) time is shown at the top. The average
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model (Floyd et al. 1973) by the propagation of phase in-
coherence as a function of increasing time distance from

the classification point which is located at time zero.

For a coherent wave train there is no fall-off in the ampli-
tude of the envelope of phase-triggered time averages (or

of the envelope of the autocorrelation function). Alpha

may be described as a quasi-coherent rhythm, which means,
according to the phase-incoherence model, that the rhythm
has a coherent mean frequency and a limited amount of phase
variance or phase incoherence; the greater the observed
phase variance, the faster the rate of fall-off in the ampli-
tude envelope of the phase contingent average. It will ke
observed in these phase contingent, stimulus-OFF averages
that there is sufficient coherence to "predict"” some rather
definite phase values at those latencies in which the major
evoked deflections appear in the AVER (which is equivalent
to the Grand Mean of the phase contingent averades). When
these phase "predictions" in the stimulus-OFF contingent
averages are compared with the phase properties exhibited

by their corresponding stimulus-ON contingent averages,
there are some striking changes. To facilitate visual exami-
nation of thése rather complex contingent expansions, we
have provided, in Figs. P3 and P4, the same data as in Figs.
Pl and P2; some schematic lines have been added to call
attention to those features that appear to us to be moved

as a result of stimulation. We have used dotted lines to
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FIGURE P.4.

Schematic overlays on the contingent expansions of subject L.H.(Fig. P.2).
These overlays indicate the principal differences to be observed between
the stimulus-OFF and the stimulus-ON conditions. Notice the phase shitt
the N1-P2 N2 components from a diagonal orientation in the stimulus-0OF}
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indicate the crests or surface-negative peaks and solid lines
to indicat- the troughs or surface-positive peaks. In the
case of the stimulus-OFF contingent averages, 1t will be
notices that these schematic lines are all essentially paral-
lel diagonals extending upward and to the left from contin-
gency 1 to contingency 20 and connecting corresponding phase
points en route. However, when we examine the stimulus-ON
phase contingent averages, we notice that these lines are
moved in such a manner that the N1, P2, and N2 lines are
swung into more or less vertical orientaticn under the N1,
P2, and N2 deflections in the Grand Mean (i.e., AVEP) of

the contingent averages. You will notice that the effects
are quite similar in both subjects. This surprisingly
systematic alteration of the phase properties is inter-
preted as strong support for the view that the photic stimuli
act to produce a phase modulation of the alpha rhythm toward
a preferred phase which is consistent with the major N1-P2-N2
deflections in the AVEP. In other words, it is this phase
shifting of the alpha from the autonomous-phase locations

to the evoked-phase locations which accounts for this por-
tion of the AVEP. That is, the "signal" or evoked component

is nothing more than the phase shifting of the autonomous

phases to the evoked phases. If this interpretation is
correct, there is no need to look for a nonalpha "signal"
to account for this portion of the AVEP. 1In an earlier
publication, Floyd et al. (1973) presented data in support
of the idea that the so-called "after-discharge" or




"reverberation" which is frequently observed at longer

latencies could be accounted for solely on the basis of

phase locking which had occurred earlier in the evoked
response, i.e., at the time of the appearance of the N1-P2-N2
deflections. 1In the present work we have produced evidence
that such phase alignment does actually occur in this region
of the AVEP.

From their study of auditory evoked potentials using
amplitude-spectral and phase-spectral methods, Sayers et al.
(1974) concluded that "a moderate-level stimulus that is
effective in evoking an evident response apparently does not
do so by contributing an obvious additive component." And
they go on to say that "an effective stimulus acts mainly

to phase-control the spontaneous activity. Their view is
somewhat similar to ours although they do not identify the
spontaneous activity as alpha. Also, whereas our model is
based upcn a single frequency component (alpha), their model
seems to require the existence of a whole series of coherent
oscillators (at least 10 harmonics), each with the capacity
for being individually adjusted in phase and amplitude. It
will be most interesting to see whether the auditory evoked
response can be successfully analyzed in terms of phase modu-
lation of a single frequency component such as alpha. The
findings of Sayers et al. (1974) certainly suggest that the
matter is worthy of careful investigation. It is tempting
to speculate that analogous phase encoding mechanisms may

operate in all of the cerebral sensory modalities.




AN ALPHA PHASE MODULATION/DEMODULATION THEORY OF CEREBRAL

ENCODING/DECODING

In contrast to the widespread assumption that alpha
is nothing but noise, we (Anliker and Floyd, 1977a) have
proposed a radically different concept which confers upon
alpha activities a central role in the encoding and de-
coding of sensory information. We call our concept the
phase modulation theory of cerebral encoding and decoding.
Accordiig to this theory, alpha serves as a phase coherent
carrier on which the stimulus effect is encoded as a phase
modulation. That is, the autonomous alpha represents the
carrier without modulation while the stimulus-influenced
alpha represents the carrier with sensory modulation. The
autonomous cortical alpha is considered to represent the
cortical-following response tc the thalamic pacemaker (the
latter being buffered from specific sensory influences).
However, the cortical following of the thalamic pacemaker
is modulated in the presence of appropriate sensory input to
the cortex. The phase modulation theory states that through
some process of comparing the pacemaker signal to the res-
ponse of the corresponding sensory cortex, the monitors (pre-
sumably cortical) are able to distinauish between (a) endc-
genous activities, i.e., those cortical responses which can
be accounted for solely on the basis of pacemaker following,
and (b) exogenous activities, i.e., those cortical responses
which differ from the pacemaker instructions. According to
the phase modulation theory, the phase-modulated components
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are culled out for further processing while the endogenous

or unmodulated phase components are disreqgarded. In other
words, the endogenous activity serves as the undifferentiated
medium upon which external influences are encoded as phase
shifts or modulations of the autonomous phase. This is re-
garded as a crucial step in the incorporation of exogenous
influences into cerebral processes. One might say that the
autonomous activities constitute a low priority input to

the cerebral incorporation process and are ordinarily dis-
regarded (i.e., nulled or filtered out) whereas the exc- ’
genous activities constitute high priority inputs which will
tend to be accepted (passed upward in the neural hierarchy)
for higher level processing in attention and memory. How
mary filters the input must pass before emerging before the
"throne of consciousness" is a question which the phase
mocdulation theory does not attempt to answer. But the theory
does state that the phase modulation is the sine qua non of
cerebral incorporation, the critical step wherein the exo-
genous influences are translated into a code or format

which is the basic language of the cerebrum. This is not to
say that frequency and amplitude influences are ignored by

the cerebrum (for obviously they are not); however, it does

" 1

mean that the cerebral "carrier" is pacemaker phase and all
time-domain inputs are encoded as phase modulation. Another
prediction of the phase modulation theory is that the de-
coding of the stored phase-modulated signals will require the

services of the original carrier frequency: in other words,
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playback will require the reactivation of the carrier (i.e.,
the presence of the autoncomous alpha rhythm) for the re-
awakening of mnemonic records, i.e., for remembrance. The
phase modulation theory predicts that remembrance will be
distorted unless the carrier frequency during playback is
identical to that during recording. This would account for
many of the perceptual distortions which are cbserved when
the autonomous alpha frequency deviates significantly from
its normal alert value. Such deviations are observed in
normal individuals during states of drowsiness and dream-
ing, and they can result from the influence of drugs, trau-
matic brain damage, and metabolic disorders. It should be
noted that it is the normal alert alpha that exhibits the
greatest phase coherence; when alpha departs from its normal
alert frequency there is a reduction in the phase coherence
of the autonomous rhythm. Although there are no conclusive
EEG records for the alpha frequency differences in psychiatric
patients during normal periods of contact and during periods
of disorientation, the theory would predict a frequency
difference. The low alpha index that characterizes schizo-
phrenics may be a clue that the normal relationship between
the pacemaker and the cortex is disturbed; if so, this would
tend to cause distortions in the perceptual processes.

It seems to us, however, that some cautionary notes
are in order. The alpha phase modulation theory in its

present form does not postulate a single alpha pacemaker
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for the entire cortex. Rather, we postulate that each
portion of the cortex has its own thalamic pacemaker refer-
ence along lines suggested by Andersen and Andersson (1968).
We would also point out that our model in its present form
is concerned primarily with the time domain; we have not at
this time attempted to reconcile our theory with an essen-
tially spatial model such as the holographic model of cere-
bral encoding proposed by Pribram (1971) except to observe
that the quasi-coherent alpha activity could provide the
coherent reference which is required by a holographic system.
Finally, we believe that a careful distinction must be made
between the use of the term "phase" in referring to the
encoding of the sensory data of visual space (see Pollen

et al. 1971), and our use of "phase" as a parameter of the

time domain. In contrast, having already utilized the time
domain to account for the encoding of spatial phase infor-
mation (Pollen et al. 1971), Pollen and Trachtenberg (1972)
are attracted to the alpha-as-noise hypothesis. They state
that "even if it were assumed that all cells in the visual
cortex were rhythmically excited by alpha activity and in
phase with each other, simple cell responses to visual

stimuli in different parts of the receptive field would

arrive at the complex cells with different latencies and
thus at different periods of the alpha cycle. The alpha
activity would facilitate some inputs and inhibit others
in a nonpredictable way--a noise process. Thus alpha block,

whether by a central active inhibitory mechanism or by a




more general desynchronization of rhythmic activity, might
serve to reduce a neural noise level." We believe that our
phase modulation theory provides a viable alternative ex-
planation to that advanced by Pollen and Trachtenberg (1972)
for the alpha blockage okserved during visual attention to
nonuniform surfaces. That is, the desynchronization of the
cortical response may represent the complex phase modula-
tion of a large cortical area in response to complex spatial
patterns of sensory input. These diverse phase adjustments
of the cellular "alpha" activities could be expected to
greatly increase the phase variance of the cell pool and
thereby reduce the magnitude of the potentials measured at
a scalp electrode. By contrast, in the absence of sensory
phase modulation, a much greater phase coherence in the
cortical activity is expected because of cocherence of the
thalamic pacemaker.

We have concluded, therefore, that simple time ageraging
of sample functions of EEG data confounds the influence of
alpha phase contingency in the generation of the visual evoked
response. By classifying each sample-function according to
the phase of the alpha rhythm at the moment of stimulus de-
livery, it is possible to regroup the set of sample-functions
into subsets representing various phase contingency ranges.
The time averages of these subsets constitute a phase con-
tingent expansion of AVEP. The results of this analysis can
be interpreted as showing that the visual stimulus (flash)

acts to phase-modulate the autonomous alpha rhythm and that
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this effect accounts for the principal N1-P2-N2 component

of the AVEP.

ALPHA PHASE PROBABILITY ANALYSIS OF THE AVERAGE VISUAL

EVOKED RESPONSE

The present study was designed to extend the alpha
phase contingency analysis and to produce a more guantita-
tive evaluation of the phase contingency effects by re-
analyzing AVER data from the standpoint of phase contingent
probabilities. We believe that the alpha phase contingency
classificatory methods described here represent a definite
advance in the techniques available for tho-analysis of
evoked responses and for the quantitative characterization
of spontaneous alpha waves.

Phase-Distortionless Filtering

In the analysis of alpha phase it is a matter of ut-
most importance to take suitable precautions to avoid dis-

torting phase in the process of filtering the EGG signals.
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Therefore, in the present study the digitized EEG data were
processed using a nonrecursive phase-distortionless filter.
The parameters of this transversal filter were (a) bandpass
of 6.0 to 18.0 Hz; (b) length of 151 samples at 2 msec per
sample; and (c) Hamming weighting. The delay added to the
EEG data from the action of the noncausal filter was also
introduced into the stimulus record and into the trigger
record so as to preserve the original time relationship be-
tween stimulus-commands (or trigger-commands) and the EEG

sample functions.

DATA-PROCESSING METHODS

Quadrature Analysis

In this study we have employed the cuadrature defini-
tion of phase which can be described briefly as follows: a
narrowband time function can be analyzed into frequency, ampli-
tude, and phase variables. If the frequency can be speci-
fied (either as a constant or as a trackable variable), it
is possible, through quadrature analysis, to describe the
instantaneous phase and amplitude of the input signal with
reference to coherent sine and cosine waves of the same mean
frequency as the signal. In our study, the mean alpha fre-
quency was obtained by autocorrelation analysis of the
stimulus~OFF sample functions of EEG, the dominant period
of this autocorrelogram being taken as the best estimate of
the mean alpha period. OQuadrature analysis, using this fre-

quency, compares the variable input signal with sine and




cosine references of the estimated frequency and yields an
in-phase and a quadrature component. These two compcnents
are used to estimate the amplitude and the phase of the
linput sample functions. In the present application, we have
/made the further specification that the positive peak of
the cosine reference wave always concides with the begin-
ning (time zero) of each sample function, i.e., the time
at which either a stimulus or a trigger is activated. The
contingent phase of each sample function is defined in terms
of the phase contingency range (we recognized twenty eqgual
18° phase ranges) within which the quadrature phase of the
sample function falls at time zero. 2 quadrature phase time
function describes the phase difference between the phase of
the coherent reference wave and the phase of the EEG sample
function at each post-stimulus (or post-trigger) latency.

A quadrature-phase time function is obtained for each
EEG sample function. This phase function is used as the
basis for further analyses of alpha phase properties.

Phase Probability Analysis

The reader, no doubt, is generally familiar with the
procedures for constructing frequency (of events) histograms
and for converting these histograms into phase probability
distributions. The GRAND PHASE PROBABILITY MATRIX contained
in each of the four figures (part E) is really nothing more
than a series of phase probability distributions in which
each of the probability distributions describes a set of

quadrature phase values observed at a particular latency. In
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the absence of stimulation one would expect that a suffi-
ciently large population of quadrature phase functions wauld
generate a phase probability matrix with an approximately
flat surface because all phases of alpha should be equally
probable at every latency. Any significant and consistent
deformation of this surface would be considered as evidence
for the existence of some sort of phase constraint.

Inasmuch as the grand phase probability matrix provides
no account of phase contingency effects, it may prove useful
to construct phase contingent phase probability matrices
as well. Since our phase classification scheme recognizes
20 different phase contingency ranges, it is feasible to
produce a separate phase probability matrix for each of
these contingencies. We have, in fact, carried out this
analysis. What is the general shape of the phase contingent
phase probability matrix? 1In each case we should expect to
obtain a delta function (Dirac) at time zero because all of
the samples would be within the same phase range at the time
of classification, by definition. With increasing time
distance (latency) from the classification point, the propa-
gation of phase incoherence would cause the probability dis-
tributions at longer latencies to be less peaked than at
earlier latencies because phase variance increases as a
function of latency magnitude. On the other hand, in the
absence of stimulus-induced phase effects, this "fanning
out" of the phase contingent phase probability matrix should

be orderly and symmetrical. Consequently, any consistent




and significant differences observed between the correspond-
ing stimulus-ON and stimulus-OFF phase contingent phase
probability matrices could be interpreted as evidence for

the existence of a stimulus-induced phase probability change.

The grand phase probability matrices in Figs.Cl-4 are
displayed in pseudo three-dimensional form. While this is
attractive to look at, this display distorts probability
along the latency axis. To overcome this limitation, two
additional plots are provided: modal phase (part C) which
shows the location of the probability peaks when projected
onto the phase-latency surface; peak amplitude (part B)
which shows the amplitude (relative) of the probability
peaks above the average probability surface.

It will be helpful to review briefly the manner in
which the COMPOSITE PLOT (part D) of the model (or peak)
phases of twenty (a complete set) phase contingent phase
probability matrices. Since it is not practical to display
80 phase contingent phase probability plots, these data are
summarized by extracting the model phase function (i.e., the
peak phase at each latency) from each of the matrices and
entering these points into a common phase-latency display.
By comparing the composite plot with its acssociated grand
phase probability matrix it is possible to discern how the
various contingent functions respond to the stimulus. These

effects will be mentioned in the Results section.




RESULTS

Our analyses of the experimental data are displayed
in Figs. Cl-4. These figures are designed to help the reader
make his own comparisons of the various analyses contained
within each figure and also to aid his comparisons of the
corresponding portions of the different figures. Obviously,
there are many interesting aspects of these data. Yet, it
will be necessary to confine our attention to the most
salient features of these data.

Figures Cl and C2 contain the stimulus-OFF and stimulus-
ON data of subject K, L. The AVER in Fig. Cla is close to
zero amplitude throughout, which is to be expected of stimulus-
OFF data. Notice that all of the other plots are consistent
with this. The peak amplitude plot (B) shows that the
largest non-zero value in the grand phase probability matrix
is quite small. The composite plot (D) shows that the con-
tingent modes are not significantly phase constrained. How-
ever, we see quite a different picture when we examine Fig.
C2 (stimulus-ON). There is a substantial N1-P2-N2 response
in the AVER (A). In the grand phase probability plot (E)
there is a large deformation of the surface of the matrix in
the latency domain that corresponds with the evoked response.
The magnitude of this response can be appreciated by looking
at the peak amplitude plot (B). What is of great interest
to us is the convergence of the modal phases of the con-
tingent probability matrices (D) at latencies corresponding

tc the evoked response (N1-P2-N2). This strongly suggests
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that the stimulus acts tc shift or modulate the autonomous
phase toward a preferred phase.

Examination of Figs. C3 and C4 shows that the second
subject (L. H.) responded in very much the same manner.
That is, both subjects show the convergence of the modal
phases (D) and the corresponding deformation of the grand

phase probability matrix.

DISCUSSION

oo

It seems to us that the results we have obtained in
these two subjects are rather robust. In other words, there
is little question that there are substantial phase shifts
evident in the stimulus-ON contingent averages; these
phase adjustments are imposed upon the autonomous alpha
activity, the latter being estimated by the ccrresponding
phase contingent stimulus-OFF averages. It is important to
take notice of the fact that all of the phase contingent
stimulus-OFF averages are, as should be expected, substantial
non-zero averages with a strong alpha-frequency rhythm. For 4
this reason there is a predicted phase for the contingent
stimulus-OFF (i.e., autonomous) alpha waves at each latency
in the post-trigger time domain). The stimulus appears to
shift the alpha phase into conformity with the evoked N1-P2-N2
complex in the AVER. There is some possibility that the
various alpha phase contingencies contribute differently to
the various latencies; however, this possibility will have

to be assessed by further analysis of the data in a subse-

quent publication. The reader's attention is directed to
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the earlier remarks concerning the effects of the propaga-

tion of phase incoherence on the shape of the phase proba-
bility distributions at the longer latencies; this flatten-
ing of the distribution means that the predictakility of

alpha phase becomes less certain at latencies more distant

from the classification point. The alpha generator is only

quasi-coherent. Nevertheless, during the latencies occu-
pied by the N1-P2-N2 complex of the AVER, the predictability
of autonomous phase contingent elpha phase is still quite
good. That is, the phase probability matrix is still ex-
hibiting reasonable peakedness at those latencies. Conse-~
quently, the kending of the modal phase probability func-
tions to produce the convergence seen in the stimulus-ON
composite plots (part D) shows the ability of stimuli to
shift alpha phase toward a "preferred" phase.

In its present form our alpha phase modulation hypo-
thesis does not assume that there is a single alpha pace-
maker for the entire cortex. Instead we postulate that
each portion of the cortex has its own thalamic pacemaker
as suggested by Andersen and Andersson (1968). However,
contrary to their model which is based upon barbiturate
spindling activity, we assume that the waking brain is charac-

terized by narrow frequency tuning, greater phase coherence,

and more coordinated pacemaker activities. We must also
point out that our alpha phase modulation model is concerned
primarily with the time domain. As yet we have not attempted

to reconcile our model with other models which are essentially
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spatial in outlook (e.g., the holographic model of cerebral

encoding proposed by Pribram (1971) although we are iware
that quasi-coherent alphe activity could provide th:¢ phase
coherent reference which is often required by such models.
We would place great emphasis upon the need for making a
careful distinction between the use of the term "phase"

in referring to the encoding of the sensory data of visual

space (e.g., Pollen, Lee and Taylor, 1971) and our use of

"phase" as a parameter of the time domain. Having already
utilized the time domain to account for the encoding of
spatial phase information (Pollen et al. ibid.), Pollen and
Trachtenberg (1972) are led to regard alpha as noise. They
comment that "even if it were assumed that all cells in the
visual cortex were rhythmically excited by alpha activity

and in phase with each other, simple cell responses to visual
stimuli in different parts of the receptive field would ar-
rive at the complex cells with different latencies and thus
at different periods of the alpha cycle. The alpha activity
would facilitate some inputs and inhibit others in a non-
predictable way--a noise process. Thus alpha block,whether
by a central active inhibitory mechanism or by a more gen-
eral desynchronization of rhythmic activity, might serve to
reduce a neural noise level." 1In contrast, we believe that
our alpha phase modulation model provides a viable alternative
explanation for the alpha blockage observed during the giving

of visual attention to ncnuniform surfaces. According to

our phase modulation model the desynchronization of the




cortical response under these circumstances may represent

the complex phase modulation of a large cortical area in
response to complex spatial and temporal patterns of

sensory input. These diverse phase adjustments (re-settings?)
of the cellular "alpha" activities would greatly increase

the phase variance of the cortical cell pool and thereby
reduce the magnitude of the potentials under a scalp elec-
trode. The greater alpha amplitude in the absence of
patterned visual contact is explained by the greater phase
coherence of the cortical cell pool during simple following

of the quasi-coherent thalamic pacemaker activities.

SUMMARY

Although simple time averaging of evoked potentials
confounds and conceals the influence of alpha phase contin-
gency in the generation of the AVER, it is possible to
analyze the role of phase contingency through the use of
alpha phase contingent phase probability measurements. The
resulting analysis is interpreted as supporting an alpha
phase modulation hypothesis of sensory encoding/decoding
in the cortex. According to this hypothesis, the sensory
stimulus acts to phase-shift the activity of the cortical
receptors away from the simple following of thalamic pace-
makers. The discrepancy between cortex and pacemaker is
regarded as the basis of cerebral encoding of sensory sig-

nals.




A NONLINEAR MODEL OF THE HUMAN ELECTROENCEPHALOGRAPHIC SIG-

NAL DURING PERIODIC PHOTIC STIMULATION

il
i

This portion of tﬂe Biocybernetics Project is concerned
with the development and testing of a mathematical model
that is effective in predicting the EEG changes resulting
from periodic photic stimulation.

There is little need to justify the development of a
mathematical model for characterizing a complex set of empiri-
cal behavior. A good model is an essential part of an ef-
fective computerized biocybernetic scheme for the prediction
and control of actual behavior. If the human brain poten-
tials are to be used in a biocybernetic system as estimators
of brain states, it is important to discover the simplest
adequate model for characterizing the phenomena of interest.
Inefficiency in the model will limit the amount of control
achievable.

The human electroencephalogram (EEG) exhibits various
complex and poorly-understood responses to repetitive flash
stimuli delivered to the eye. In the present investigation,
these EEG changes are characterized in terms of the simplest
nonlinear input-output model having similar properties of
response. Quantitative testing and evaluation of the charac-
terization are achieved through the use of digital simulations
of the model's behavior and the use of digital analyses of

experimental EEG data. The fit between the model's predictions
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and the EEG is good, particularly for periodic stimuli, and

extends over a relatively wide range of frequencies. The
model is reasonably consistent with what is known about the
physiology of alpha wave generation and it is able to unify
several apparently disparate phenomena (i.e., they are seen
as derivable from the same nonlinear system). The model is
also consistent with the sampled-data model (Vossius, 1961;
Young and Stark, 1962; etc.) for relationships between sac-
cadic eye-movements, EEG activity, cortical excitability,
and visual perception.

As preparation for the development of a model of EEG
alpha generation, a large body of relevant literature is

examined, including work on the EEG as an autonomous sig-

nal, the EEG response to periodic photic stimulation (flicker),

the time-averaged respconse to single stimuli (average visual

evoked potentials), thalamo-cortical neurcphysiology, thalamic

and cortical excitability cycles, visual reaction time, sac-

cadic timing, and short-term visual memory. Of critical

importance to this model is the observation that the mechanism

of alpha rhythm generation is nonlinear. This and several
other key phenomena are noted.

To characterize these phenomena, a simple second-order
nonlinear differential equation exhibiting similar behavior
is selected. This equation, known as the van de Pol oscil-
lator, is used to model the EEG response to periodic visual
stimulation. In this model, the autonomous limit cycle
oscillation represents the alpha rhythm, and a coupled
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excitation function represents visual field intensity. 2

perturbation technique for analyzing the response to im-
pulse trains is developed, and numerical verifications are
obtained through simulations in a digital computer.

EEG recordings from subjects exposed to sine-modulated
or to stroboscopic flashes, on the one hand, and simulated
EEG generated by the model, on the other hand, are processed
identically and the results are compared. The behavior of
the nonlinear model matches the actual EEC responses quite
well over a relatively wide range of stimulus frequencies
and experimental parameters. Given the low order of the
van der Pol oscillator, the number of EEG phenomena which
it predicts is rather surprising (and gratifying). How-
ever, the fact that the model does not predict transient
effects as well as it does steady-state behavior suggests
that a higher-order model, such as a network of oscillators,
is worth investigating.

It must be recognized that an input-output model of
the sort employed here is not a physiological model because
there is no plausible correspondence between the model com-
ponents and particular physiological mechanisms. Much of
the success of the oscillator-model used in the present
study is due to the fact that it is treated as a canonical
model, a tool for classifying phenomena in their simplest
form. As such, it provides a quantitative template for any
model attempting to account for the same phenomena and it
provides a useful set of behavioral classes acainst which
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one may check the performance of an alternative model.

Until it has been proved otherwise, we can entertain the

hypothesis that the van der Pol type of oscillator is

the simElest nonlinear model that exhibits the same classes

of behavior as the actual process. In any event, the
provides a useful step in the direction of developing
more complex and more capacious model.

This nonlinear model of the human EEG signal is
cribed in considerable detail in a Ph.D. dissertation
John R. Nickolls (1977), a copy of which is submitted

this report.

81

model

a

des-
by

with




REFERENCES

Andersen, P., and Andersson, S.A.: Physiological Basis of
the Alpha Rhythm. Appleton-Century-Crofts, New York,
1968. -

Anliker, James: "Eye movements: on-line measurement, analysis,
and control," a chapter (pp. 185-202) in Monty, R.A.,
and J. Senders (Eds), Eye Movements and Psychological
Processes, Hillsdale: Lawrence Erlbaum Associates,

1976

Anliker, J.E.: "Biofeedback from the perspectives of cyber-
netics and systems science," a chapter in Beatty, J.,
and H. Legewie (Eds), Biofeedback and Behavior: A
NATO Symposium, New York: Plenum, 1977 (in press).

Anliker, J.E., and Floyd, R.V.: “Alpha phase contingency
analysis of the average visual evoked response," sub-
mitted for publication in Electroencephalography and
Clinical Neurophysiology, 1977a.

Anliker, J.E., and Floyd, R.V.: "Alpha phase probability
analysis of the average visual evoked potential,” San
Diego Biomedical Symposium, 1977b (in press).

Bechtereva, N.P., and Usov, V.V.:"Technique of intermittent
photic stimulation, timed to intrinsic brain potential
rhythm, applied to EEG recording," Sechenov Physicl.
Jd. U.8.5«R., 1960, 46: 108-111.

Bechtereva, N.P., and ZONTOV, V.V.: "The relationship between
certain forms of potentials and the variations in brain
excitability (based on EEG, recorded during photic
stimuli triggered by rhythmic brain potentials) ,"
Electroenceph. Clin. Neurophysiol., 1962, 14:320-330.

Bekkering, D.H., and Storm van Leeuwen, W.: "The effect of
light flashes triggered by the EEG," Electroenceph.
Clin. Neurophysiol., 1954, 6:540.

Boer, E. de and Kuyper, P.: "Triggered correlation," IEEI
Trans. Biomed. Eng., 1968, BME-15:169-179.

Callaway, E.: "Day-to-day variability in relationship betwee:
electroencephalographic alpha phase and reaction tims
to visual stimuli,
1183~1186.

* Ann. N. Y« Acad. BCil., 41961,




Callaway, E., and Layne, R.S.: "Interaction between the visual
evoked response anc¢ two spontaneous biological rhythms:
the EEG alpha cycle and the cardiac arousal cycle,"

Ann. N.Y. Acad. Sci., 1964, 112:421-431.

Callaway, E., and Yeager, C.L.: "Relationship between reac-
tion time and electroencephalographic alpha phase,"
Science, 1960, 132:1765-1766.

Clark, M.R., and Stark, L.: "Time optimal behavior of human
saccadic eye movement," IEEE Trans. on Automatic Con-
trol, June 1975, AC-20, no. 3: 345-348,

Cook, G., and Stark, L.: "Derivation of a model for the
human eye-positioning mechanism," Bulletin of Mathe-
matic Biophysics, 1967, 29:153-174.

Cook, G., and Stark, L.: "The human eye-movement mechanism,"
Arch Ophthal., April 1968, 79:428-436.

Cornsweet, T.N., and Crane, H.D.: "Accurate two-dimensiocnal
eye tracker using first and fourth Purkinje images,"
J. of the Optical Soc. of America, August 1973, 63,
no. 8:921-928.

Crane, H.D., and Steele, C.M.: "An accurate three-dimensional
eyetracker," Stanford Research Institute: unpublished
report.

Dustman, R.E., and Beck, E.C.: "Phase of alpha brain waves,
reaction time, and visually evcked potentials," Electro-
enceph. Clin. Neurophysiol., 1965, 18:433-440.

Ein-Gal, M., and Lai, D.C.: "Error-free representation of
EEG signals," Proceedings, IEEE Conference on Systems,
Man, and Cybernetics, 1973, 242-243.

Floyd, R.V., Lai, D.C., and Anliker, J.E.: "A model for the
photically stimulated electroencephalographic signals,"
San Diego Biomedical Symposium, 1973, 12:5-16.

Fuchs, A.F.: The Saccadic System from The Control of Eye
Movements, P. Bach-Y-Rita and C.C. Collins (Eds),
New York: Academic Press, 1971, 343-362.

Morf, M., and Kailath, T.: "A classification of recursive
modeling methods," Proceedings of IEEE Conference on
Acoustics, Speech, and Signal Processing, Hartford,
Connecticut, May 1977.

83




r
f
i
-

A

Nickolls, J.R.: "A nonlinear model of the human EEG signal
during photic stimulation," Ph.D. dissertation, Depart-
ment of Electrical Engineering, Stanford University,
Stanford, California, 1977.

Noton, D., and Stark, L.: "Scanpaths in saccadic eye move-
ments while viewing and recognizing patterns," Vision
Research, 1971, 11:929-942,

Pollen, D.A., Lee, J.R., and Taylor, J.H.: "How does the
striate cortex begin the reconstruction of the visual
world?", Science, 1971, 173:74-77

Pollen, D.A., and Trachtenberg, M.C.: "Some problems of occi-
pital alpha block in man," Brain Res., 1972, 41:303-314.

Pribram, K.: Languages of the Brain: Experimental Paradoxes
and Principles in Neuropsychology, Englewood Cliffs:
Prentice-Hall, 1971.

Rémond, A., and Lesévre, MN.: "Variations in average visual
evoked potential as a function of the alpha rhythm
phase ("autostimulation") ," Electroenceph. Clin.
Neurophysiol., 1967, Suppl. 26:42-52.

Robinson, D.A.: "Progress in models of eye movement control,"
Proc. of the 1972 Int'l. Conference on Cybernetics &
Soc., 1972, 19-24,

Robinson, D.A.: "Models of the saccadic eye movement control
system," Kybernetik, 1973, 14:71-83.

Sato, K., Honda, N., Mimura, K., Ozaki, T., Teramoto, S.,
Kitajima, K., and Masuya, S.: "A simplified method
for auto-correlation analysis in electroencephalography,
Electroenceph. Clin. Neurophysiol., 1962, 14:769-771.

Sayers, B. McA., Beagley, H.A., and Henshall, W.R.: "The
mechanism of auditory evoked EEG responses," Nature
(Lond.), 1974, 247:481-483.

Shah, A.: "Modeling of saccadic eye movements and EEG alpha
rhythm," Ph.D. dissertation, Department of Electrical
Engineering, Stanford University, Stanford, California,
1977,

Turton, E.C.: "An electronic trigger used to assist in the
EEG diagnosis of epilepsy," Electroenceph. Clin. Neuro-
physiol., 1952, 4:83-91.

Vossius, G.: "Die regelbewegung des anges," in Aufnahme und
Verarbeitung von Nachrichten durch Organismen, ed.
VDE. Stuttgart, 1961.

849

—




W

Walter, V.J., and Walter, W.G.: "The central effects of
rhythmic sensory stimulation," Electroenceph. Clin.

Neurophysiol., 1949, 1:57-86.

Walter, W.G., Dovey, V.J., and Shipton, H.W.: "Analysis of
the electrical respcnses of the human cortex to photic
stimulation," Nature (Lond.), 1946, 158:

Weaver, D.K., Jr.: "A third method of generation and detec-
tion of single-sideland signals," Proc. IRE, 1956,
44:1703-1705.

Westheimer, G.: "Mechanism of saccadic eye movements," Amer.
Med. Assoc. Arch. Ophthalmol., 1959, 52:710-724.

Yarbus, A.: Eye Movement and Vision, New York: Plenum Press,
1967.

Young, L.: "A sampled data model for eye tracking movements,"
Sc.D. Dissertation, M.I.T., Cambridge, Mass., 1962.

Young, L., and Stark, L.: "A sampled-data model for eye
tracking movements," Quart. Progr. Rept. Res. Lab
Electr., M.I.T., No. 66, 1962, 370-384.

Zuber, B.L., Stark, L., and Cook, G.: "Microsaccades and the

velocity amplitude relationship for saccadic eye
movement," Science, 1965, 150:1959-1960.

85




APPENDIX I

A CLASSIFICATION OF RECURSIVE MODELING METHODS

by

Martin Morf and Thomas Kailath




APPENDIX I

A Classification of Recursive Modeling Methods

I. Introduction

Closely-coupled man-machine systems require efficient estimation and
prediction of central nervous system (CNS) activities, such as eye movements and
EEG signals. Although the systems responsible for these CNS activities are complex
and time-varying, linear systems modeling techniques can be successfully used to
predict CNS states. Model parameter estimates can be updated in time, yielding a
time-varying linear model. Nonstationarities in observed CNS activities can be
modeled with time-varying model parameters, or with a time-invariant linear
model with suitable initial conditions.

The flexibility of linear systems modeling has resulted in the rapid development
of methods and applications in many areas, particularly seismic data processing and
speech modeling. Due to the diversity of these developments, there exists a
plethora of methods for estimating the parameters of linear models given -
input-output data, transfer functions, or covariance functions. Here we present a
systematic classification of exact least-squares modeling procedures that are
recursive (in model-order) and optimal in some sense [MKLNV]. Methods which
are suboptimal or approximate will only be briefly indicated. Within this
framework, we shall point out some new algorithms that have many
computational advantages over existing ones. Since we consider state-space,
autoregressive moving - average models, and the related ladder realizations, we
shall distinguish the following three classes of algorithms: Riccati or square-root
type methods, recently developed fast algorithms, and their ladder forms. While
the first class typically requires computations of O(n3) or O(n?) with n equal to the
number of model parameters, the fast forms only require operations and storage of
O(n). Because efficiency is critical in real-time estimation, prediction, and control,
these fast algorithms are of particular interest here.

In Section II we introduce the modeling problem by reviewing external and

86




internal (linear) models, and consider the types of observed data used to estimate
the model parameters. We then introduce a systematic classification in tableau
form of the various methods to be discussed. It should be stressed here that these
least-squares modeling methods can in general only determine the unique
innovations representation (IR) model [K-S74]. This 1is usually a
finite-dimensional linear model driven by white noise, conceptually the
innovations or one-step prediction errors. The output of the model represents the
process of interest, e.g., eye-movement signals or EEG signals. There exist many
such models, but the IR model is the only one which is both stable and stably
invertible. The inverse process yields the innovations when driven by the
observed data. This means that even though the driving inputs to the IR model are
usually not known (e.g., neurological control signals), they can be estimated from
the current model parameter estimates. Thus the parameters of the IR model are
chosen to produce behavior statistically equivalent to the observed data.

In Section III we consider batch methods that are best suited for cases where the
observed data is accessed in blocks. 'l:his typically occurs when the data is in the
form of a covariance function or system transfer function. A traditional block
method based on the Yule-Walker equation [Par] has been used to predict the EEG
alpha wave, as indicated elsewhere in this report. Both autoregressive (AR) and
autoregressive - moving average (ARMA) models are treated, and the fast versions
which utilize certain matrix properties are indicated.

In Section IV recursive (in time) modeling methods are discussed. These
procedures access the input-o* sequentially, and are known as on-line
methods in the control context [..&), | MKL]. They are ideally suited for real-time
biocybernetic applications. Again, the fast versions of these algorithms are pointed
out,

In section V the new ladder (or lattice) - type realizations of the fast algorithms
discussed in Section III and IV are introduced [IS], [Mo]. These new methods have
nice stability properties and good numerical behavior. They also have lowest
computational complexity and minimal storage requirements.
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In Appendix A we show how to obtain partial realizations of the joint impulse
response - matching and covariance - matching type, that are both stable and

minimal. In Appendix B, we present an example of our new exact least-squares

recursions for ladder-form realizations, called the "pre-windowing" case [MDKV].




II. The Modeling Problem

The many different types of linear models can be classified into "external" or
input/output descriptions, and "internal" or state-space descriptions. We will first
consider "external" descriptions, which are sometimes referred to as transfer
function type models.

Let us consider a finite-dimensional linear system (FDLS) with inputs { u(:) } and
outputs { () }. The outputs represent sampled data, such as speech where y's are
scalars, or seismic signals from a geophone array where y's are r-vectors. The
input-output relationship can be described by an autoregressive - moving average

(ARMA) model
Ytaigt - i, = W, (2.1a)

w; = bou;+ ...+ i20, n>q20, (2.1b)

i qui-q i
where { w(:) } is a moving average of a white noise sequence { u(-} } and the values
{949, ---» ypland {u, ..., u_q} are initial conditions. The modeling
problem here is to determine the model parameters q; and bi . Applying the

z-transform

¥a) = f;:v.- r (2.2)
to equation (2.1) yields :
a(z)y(z) = b(z)u(z) + { terms involving the initial conditions } , (2.3a)
a(z) = " +a‘z"" % ooee B8 (2.3b)
bz) = boz" + blz"“ # oy i)qz"'q : (2.3c)

With zero initial conditions and scalar processes, the ratio of %z) and u(z) gives the
transfer function T(z) = dz)la(z) . When bz) « 2%, k20 then { w() } 1s a white
noise sequence and { %) } is called an autoregressive (AR) process; the model is
referred to as all-pole. Alternatively, when a(z) « 2", { (-) ] is a moving average

(MA) process and an all-zero model is obtained.
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Turning to "internal" models of the FDLS, we can consider { y(-)} as being

generated from { u(:) } with a suitable initial condition {xo} by the state-space model

x'-.l = ¢ X"- + r u‘-‘] -
¥ - H X i20. (2.4)
This model can be chosen to have the given transfer function
= - = l - b<z)
T(2) H(A-¢)-'zT @ (2.5)

Note that for convenience we have used a model driven by u;,» rather than the
more commonly used model driven by u; [MKD] since they can be related [Mo].
Given the transfer function, a simple way to choose the matrices { H,¢,T } is

the "observer canonical" form

¢ -2Z-a, H H-q' T, (2.6)

T A T A T "
where ' denotes transpose, &,, = o a,] .bq M [bo. e bq] , Z is the "delay
matrix": Z; ; Sif (j~i = ) then lelse 0, and ¢ =[1, 0, . . ., 01" is the first unit

vector. The state-space model provides a convenient way of computing the
covariance function of thg output process. Even though the underlying model
{H,® T}or{a,, bq } is time-invariant, the output process { y(:) } is in general
not stationary due to "transients" caused by the initial conditions. However, if ® is
a stability matrix where all eigenvalues have magnitude less than one, then as (-~
the transients eventually die out and the process becomes stationary. In the
stationary case, the covariance is a function of |[|-f| given by
Ry(z',j) - H®l-JITTH' , where [l is the state covarlance matrix as i« (see
[DKM)).

ARMA models and state-space descriptions are just two different methods of
representing the input-output relations of a FDLS, and they can be closely related to
each other using matrix fraction descriptions (MFD's) [DKM]. A lesser-known class
of FDLS representations are the ladder realizations, which are discussed in section

V and are also related to the ARMA and state-space models.
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In modeling a process as a FDLS driven by white noise, the observed data is
usually available in one or more of the following forms:
a) input-output pairs { u(-), () };
b) impulse response or related sequences such as moments, (or moment estimates,
e.g. obtained from input-output pairs);
c) covariance functions or second order knowledge of inputs and/or outputs, (or

estimates, e.g. from the impulse response).

Batch methods are used when data is accessed in blocks, as in b) and c); efficient
methods for determining model parameters are recursive in order. Recursive (in
time) methods are appropriate when data is accessed sequentially, as in a). Model
parameters can then be estimated recursively both in order and time. Table 1
illustrates the modeling methods that we will discuss; they are divided first into
batch and recursive groups, then by model class: Riccati or square-root methods,
"fast" algorithms, and their ladder forms. Within each class the name or code for

each method appears along with some pertinent references.
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ITI. Batch Methods
When observed data is available in blocks, batch modeling methods are
convenient. We will first consider AR models because of their widespread use
[Makh]. The recently developed "linear predictive coding" (LPC) speech
compression schemes, for example, are a direct application of least-squares fitting
of AR models [AH], [1S], [Wak] (for a survey see [MG]). AR models have also been
very useful in statistics [Par], [BJ], spectral analysis [UB], [Aka], and multichannel

geophysical applications [Rob], [WR].

Normal Equations
It is well known in least-squares problems that the parameters of an AR model

satisfy a set of linear equations called the normal equations (see [K-874], [MG]) :
a'R,=[l,-a;, . ..,-¢JR =[Re,0O, ..., 0] . (3.1)
An alternate form is the Yule-Walker equation [Par] :

& TR gl IRy ey R (3.2)

I:n
In both forms R_ is a covariance matrix and the a‘-'s are the "predictor" or AR model
parameters. R( is the '"prediction error" or innovations covariance, a
non-increasing function of n (typically the model order). In speech processing, two
popular methods of obtaining the normal equation are the "autocorrelation" method
and the "covariance" method [MG], but there exist many ways of estimating the
covariance R, [BJ], [MDKV], [Di]. General methods for solving such linear
equations include Gaussian elimination (GE), Cholesky decomposition, Householder
transforms [Hou], [GGMS]; however, they all require computations of O(n3).
The Levinson-Wiggins-Robinson (LWR) Algorithm

An algorithm that requires only 0(n%) computations for the recursive solution of
normal equations with Toplitz covariance matrices (corresponding to an
assumption of stationarity of the process) was first described by Levinson [Lev]

and later extended by Wiggins and Robinson [WR]. By making use of certain
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shift-invariance properties of Toplitz matrices (the {,f-th entries are only a
function of i-j), this algorithm solves the normal equation via a set of recursions
that update the AR parameters or the predictor parameters in increasing order
[Rob], [K-S74]. The Levinson recursions are also closely related to the orthogonal
Szego polynomials [Sze], [GS], [KVM]. Levinson's algorithm plays a central role
because it can be generalized to handle multi-channel data [WR],
multi-dimensional or image processing problems [LKM], nonstationary processes
with "shift-low-rank” [Mo], [FMKL], ladder realizations {MV], [MVK] and ARMA

or state-space models [MKD], [MKL], [DKM].

ARMA Models
In state-space terms, the problem is to find a triple (H, ¢ T } such that
T; = H®T', where {T;} is a given set of "first order" data characterizing the
impulse response of a linear system. This is the partial realization problem [KFA],
[DMK]. The central role in this realization theory is played by the Hankel matrix

with entries Hi,j =T, . The columns or rows of this matrix are known to span

i+j-1
the state-space, so any method for finding a basis is a viable realization method. Of
particular interest are methods for finding the smallest basis resulting in minimal
order n realizations [HK], [Si], [YT]; they all require 0(n?) operations.

From a transfer function point-of-view, the partial minimal realization problem
is that of finding two relatively prime (matrix) polynomials a(z) and b(z) such that
the given power series 7(z) matches say 4 terms of the expansion of &(z)/a(z) . This is
the classical Pade approximation problem, which in the scalar case yields
T(z) a(z) = b(z) + { terms in z‘i, i>k-n} . Equating coefficients of %, 0sisn 5
we get

Hnan =0, or Hn (a

O % T ¢ SRR, Y L (3.3)

n' ne n+lt
where Hn is a Toplitz matrix containing the reversed column ordered Hankel
matrix Hn . Note the similarities here to the normal equation (3.1) and to Prony's

method [MG].
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Again, standard methods could be used to solve for &,, but they all require

computations of O(n%). However, if one takes advantage of the structure of the
Hankel or Toplitz matrices, fast algorithms can be found. Such algorithms have
been developed (in a coding theory context) by Berlekamp [Be] and for minimal
realization by Massey [Mass]. Multivariable versions have also been developed
[Mo], [DMK]. These recursions are strikingly similar to Levinson's recursions; the
Berlekamp-Massey algorithm can also be related to orthogonal Lanczos polynomials
[Lanc], [Mo]. An alternative method for obtaining stable partial minimal
realizations is discussed in Appendix A. It can also be derived by considering a
Gram-Schmidt (GS) orthogonalization on the columns of the Hankel matrix H or
the Toplitz matrix H" [Mo], or more generally by using projection methods
[KKM].

Spectral Factorization and Innovations Representations

The problem of obtaining a model of a process { y(*) }, given its covariance
function or second order information, is called stochastic realization. We are
interested in representing { y(*) } as the output of a linear model driven by white
noise. In general, there exist many such models, however the only stable and
stably invertible model is the (unique) innovations representation (IR) [K-S74].
The inverse model is the whitening filter that produces a white noise process, the
innovations { €(*) }, when driven by the observed data. In discrete-time or time
series analysis, the innovations are the one-step prediction errors of the
observations. If the process { §() } is stationary, the problem of obtaining the IR
essentially reduces to one of spectral factorization.

An efficient method for obtaining the spectral factors of Sy(z)
Sy(Z) = b(z) b6(-2) [ a(z) a(-2) , (3.4)

is given as a two-step procedure in [DKM], [MKD], [Mo]. In the stationary and
scalar process case considered here, the truncated or one-sided power spectrum S (z)

of { %) } is formed from the covariance sequence. A minimal realization algorithm
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is then used to approximate § (z) by ¢(z)/a(z) , where I/a(z) is the AR-part or the
desired model. From
S0 = ad) S () az’) = a(agz)) + g(ma(z”h)
= b2 bz (3.5)

it can be seen that the spectral factorization problem for { y(:) } is now reduced to
the simpler factorization problem for a MA-process { w(:) } , where the factor &z) is
the MA-part of the desired model. It can be obtained by Cholesky and other
factorization procedures., Thus { §(:) } is modeled by the cascade of the AR and MA
parts driven by the innovations, a white noise.

In the time-domain this corresponds to a factorization of the (stationary)
covariance (a Toplitz matrix) into triangular factors. The "fast-Cholesky"
factorization given by [Mo] is an efficient algorithm for stationary and
non-stationary covariance matrices with "shift-low-rank". It should be noted that

many popular covariance estimates have this property.
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IV. Recursive "in Time" Methods

When the observed data is available as input-output pairs that must be accessed
sequentially, recursive modeling methods are the most appropriate. Many recursive
least-squares methods have been developed in the identification and control area;
they typically involve solving Riccati-type equations and have computation and
storage requirements of O(n3) and O(n?) respectively. Recently "fast" algorithms
have been developed with reduced computations and storage of O(n) using ARMA or
ladder realizations .

An important set of least-squares recursive methods for AR-type models is
described in detail in [SLG] and more recently in [MKL]. The discussion includes
least-squares (LS), weighted least-squares (WLS), generalized least-squares (GLS),
instrumental variable (IV) and recursive maximum-likelihood (RML1,2) methods
for ARMA models. All these methods solve a Riccati equation that recursively

updates the inverse of the matrix appearing in the normal equation of the problem.

An alternative to the Riccati equations are the square-root forms discussed for
instance in [MK]. They make use of the numerically preferrable orthogonal
transformations [Hous], [GGMS].

A special case of the IV method is obtained by using the n-step delayed outputs as
instrumental variables. This can be shown to be equivalent to a minimal realization
problem given (estimated) covariances R . Recall that in the given (estimated)
covariance case we discussed a two step procedure. The first step was to obtain a
minimal realization, or rational approximation of §,(z) by ¢(z)/a(z), or in the

time-domain of R, by Q A-1 [DKM], [MKD]. In matrix notation we obtain

R A - Q (4.1)
where A and Q are banded matrices of "band width" n , if the underlying linear
model is of that minimal order. The first column of (4.1) corresponds to equation
(3.3)

(4.2)
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where R is the (2,1) block entry of the appropriately partitioned triangular

n
Toplitz matrix R, . The matrix Rn is the cross-covariance of the last n observations
and the same set n time-steps delayed, Rn clearly plays here the rcle of the

reversed ordered Hankel matrix H n - By noting that the Riccati-type equation can

be interpreted as a recursion for (low rank) updating of the inverse of a matrix, we
see that the IV method can be viewed as a recursive (in time) updating procedure

for the minimal realization solution for & in equation (3.3).

Fast Algorithms for Recursive "in Time" Methods

In [MKL] the development of "fast" algorithms for the recursive least-squares
methods is discussed in detail. Efficient recursions for time and/or order updates
for AR-type models were first derived in [Mo]. The basic idea there was the
observation that the matrices encountered in many least-squares problems have a
“shift invariance" or a "shift-low-rank" property. It can be characterized by the
(low) rank p of the shifted difference of a matrix M: p (M = Z"M Z ], where
the "delay" matrix Z was defined in Section II. This property is generated by the
fact that these matrices are sums of products of Toplitz or Hankel matrices. It can
also be used to obtain fast Cholesky algorithms for MA processes, thus obtaining
recursive whitening filters of the AR type ( e.¢. RMHS algorithm in [Mo]).

Similarly we can obtain general LWR recursions in order and time for AR
processes, i.e. updating the MA prediction (whitening filter) parameters q;. A
surprising feature of the fixed-order recursive-in-time algorithms is that explicit
updating of the covariance estimate is unnecessary, basically because the model
parameters are an implicit characterization of the covariance. Since the details of
these algorithms can be found in [MKD],[DKM],[Mo],[FMKL] , we shall only give a
comparison of the LWR-type algorithms, assuming that the reader is already
familiar with the Levinson recursions as described in [Wie), [WR], or more
recently [K-S74].

The recursions for the generalization of the LARW algorithm for covariance

matrices exhibiting a shift invariance property have a very similar form to the
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original Levinson recursions. However, in contrast to the two solutions required in
the LWR algorithm, the so-called forward and backward predictors, we require in
general more solutions for non-Toplitz matrices. It turns out that the
“shift-low-rank" p of the covariance matrix, regardless of its size, is equal to the
number of solutions required in the recursions. For the case of covartance
estimates that can be written as products of two Toplitz matrices (typically
containing input-output data), the number of solutions required is at most four in
the scalar case, and 2m+2 for m-channel data.

For combined ARMA models we can either attempt to model first the AR or the
MA part and then try to estimate the remaining part of the model. In the batch
methods of Section IlI we discussed ways of obtaining the AR part first via minimal
realization and then the MA part via spectral factorization. The other order of first
obtaining the MA part could be obtained by working with (an estimate of) the
inverse of the covariance matrix, the so-called information matrix [MK].

The cascaded approach can be carried out also in time recursive form by
estimating the AR part via a (fast) recursive form of the IV method, as discussed
above, cascaded by the fast Cholesky recursions for a MA process (e.§. RMHS in
{Mo]). The only difficulty now is that both parts estimate the models in the
so-called controller or "tapped delay line" realization, a dual form to the observer
form, which cannot be merged by inspection.

The joint innovations representation approach discussed in Section III and
Appendix A is ideally suited for recursive in time methods. Even though the
driving inputs (conceptually the innovations) are usually not available, they can be
replaced with their best estimates obtained by using the best current parameter
estimates. This is clearly only possible for methods with sequential data access. It
turns out that this seemingly "suboptimal" approach of substitution has itself
optimality properties (see e.g. [SLG]); a similar situation occurs in detection of
unknown signals, and in the famous separation result of linear quadratic control
using state estimates [KFA]. The recursive maximum likelthood methods in [SLG]

and [MKL] can be derived from such an approach. Once estimates of current
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prediction errors are obtained, they can conceptually be treated as known data, and
entered for instance in normal equation expressions. The only problem that might

arise lies in theoretical proofs of the convergence of such methods.
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V. Ladder Realizations

In Section 1I we discussed the realization of a given transfer function 7(z) =
b(z)/a(z) via transfer function or state-space type models such as ARMA, controller,
or observer canonical forms. If the roots of a(z) are known, T(z) can be represented
by a partial fraction expansion. Using polynomial evaluation formulas we can
obtain the so called Jordan canonical or parallel decomposition form (even for
matrix transfer functions) [Mo]. The Jordan form has the nice property that
stability can be checked by merely inspecting the magnitude of the roots . Finding
the roots, however, is numerically sensitive.

The ladder (or lattice) canonical realizations provide a very promising
alternative. They also have the property that stability and even minimum-phase
can be checked by inspecting the PARCOR or reflection coefficients [IS], [Wak],
[MG], [Mo], [Cla2]. In contrast to the methods for finding roots of polynomials this
requires only a finite algorithm, the Schur-Cohn test for stability. This is actually
equivalent to the Levinson or orthogonal Szego polynomial recursions performed in
decreasing order on &; or a,-(z) , [K-8§74]. Given the stationary covariance matrix R,
i.e. second order information, the &;'s and the reflection coefficients can be
computed via the LWR algorithm. From a stochastic process point of view we can
identify these coefficients with the partial correlation (PARCOR) coefficients or
singular values. They also have physical significance in the scattering theory of
waves [18], [Wak], [K-574], [MV], [MVK].

The Levinson algorithm can actually be carried out using only the reflection
coefficients as parametrization, since the inner product k; of a vector r & [ry, ..., ;)"
and the coefficient vector a'._’ can be obtained as the current output k'- of a ladder
realization driven by a previous input sequence containing {ry, ..., r;} . Similarly
we can translate other algorithms for AR models, such as the various generalized
Levinson algorithms [Mo], [DKM], [LKM], Appendix A, into their ladder form
equivalents as in [MVK], [MV], Appendix B. These forms are of interest by virtue
of their stability properties and their numerical robustness -- they typically
require sample correlation operations. These forms have also canonical [Mo] and
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invartance properties [ MVK], as well as minimal storage requirements for modeling
algorithms, as seen from a comparison of the the recursions for the PARCOR and the

&; parameters in Appendix B.

ARMA models

Recall that the first step of realizing an ARMA model in Section III was a minimal
realization problem. The solution to this MR problem can be carried out in ladder
form by using a Berlekamp Massey (BM) - type algorithm. These recursions are
actually very similar to the LWR recursions, as noted in {Mo]; therefore we can use
an analogous derivation to obtain ladder forms for the BM recursions, as presented
in [GrMo].

Alternatively, the joint IR approach explored in Appendix A, leads (even for
scalar) processes to the theory of multichannel ladder realizations of the AR type
discussed above. Since we embedded the underlying ARMA model in a two channel
AR model, the IR model will again be of order 2n , i.e. non-minimal. This would also
hold for a ladder realization.

Minimal models can be obtained by merging the AR and MA parts in the observer
form. It is also possible to obtain a minimal rational ladder form {MG], (Mo]. The
basic idea in state-space terms is to add a suitable input matrix (T') or output matrix
(H) to a ladder form realization of the AR part of the model; this is possible since
the ladder forms are controllable ( or their dual observable ) {Mo].

The second step of the stochastic realization procedure of Section III requires a
spectral factorization for the determination of the MA part. As indicated, we need
to determine the triangular factors of the (banded) covariance matrix of the MA
process. They can be obtained from the Cholesky factors or the RHS of the LWR
recursions. Similarly it is possible to obtain the ladder realizations of the MA part,
since the fast Cholesky recursions "by rows" have the form of a state-space
equation with a dynamic matrix ® that has precisely the same form as the ¢ matrix
of a feedback ladder form in state-space notation [Mo]. As for the LWR recursions,

there similarly exists a ladder form of the fast Cholesky algorithm that requires
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only reflection coefficients as parametrization,

Ladder Forms for Recursive "in Time" Methods

The ladder forms for exact least-squares solution to AR modeling have been
developed in [MV]. In Appendix B, we shall present the simplest one of the many
possibilities of such ladder forms, the “prewindowing" case [MDKV]. It is
interesting to note that the partial correlation coefficients are computed as sample
cross correlations between the "forward" and "backward" prediction errors as
expected from the stochastic derivatic, s of the ladder forms [Wak], [Mo], [SKM].

The ladder forms of the GLS and RML1/2 methods discussed in [SLG], [MKL] and
Section IV can be obtained by embedding the models in an appropriately augmented
AR model as in Appendix A . The IV method led to nonsymmetric Riccati equations,
therefore the fast versions also require a nonsymmetric form of the LWR
recursions. However it is clear that these recursions are then of the BM type since
this algorithm also works with nonsymmetric (though triangular) Toplitz
matrices. Therefore, we could obtain "nonsymmetric" ladder forms of the type
given in [GrMo]. Although the final algorithms of these ladder forms are simple to
implement, the exposure of the "shift-invariance" is in general nontrivial [MV].

Our preliminary experience with the numerical properties of these algorithms
has been very encouraging; in general ladder realizations are superior to direct
forms for computing estimates of the coefficients of a(z) and &z) . Stochastic
approximation or gradient type methods using ladder forms can be obtained easily,
e.g. [SV]; however, they have drawbacks similar to other stochastic approximation

methods, especially for covariance matrices with extreme eigenvalue distributions.
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Conclusions

We have presented a number of modeling methods in a framework which
includes the new ladder-form realizations. Of the three types of procedures
considered, e.g. Riccati or square-root methods, fast methods utilizing matrix
shift-invariance properties, and ladder-form methods, the latter two are most
suited to problems réqulring efficiency. In particular, the recursive in time
versions lend themselves to on-line or real-time applications because the
input-output data is accessed sequentially one sample at a time. Also, new
parameter estimates are available at each sample time, which facilitates on-line
control problems.

The ladder-form methods also have the desirable property that their stability
can be checked merely by inspection of the reflection coefficients. In addition,
they are numerically robust since the major operations are sample cross
correlations. They also have minimal storage requirements for least-squares
modeling methods. The structure of the ladder-type realization suggests that the
reflection coefficients may have physical significance in the process being
modeled. For instance, in speech models, the PARCOR coefficients correspond to

acoustic wave reflection coefficients in the vocal tract.
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Appendix A: Stable Partial Minimal Realizations
In this appendix we show how to obtain stable partial minimal realizations of
the joint impulse-response and covariance-matching type. It will turn out that we
can obtain an ARMA model by imbedding it in a two channel AR modeling problem.
Given an ARMA model as represented by the difference equation of section II, we

can rewrite it as (let ¢ = n)

Je Ay b e an‘vt-n_b] U] 4= sl bnut-n = bOul ' (A1)
or a'y, - b'u, = bju,, where
B e Bl gy s tipl B T E s < ix B ds
B e (0,8, o0 Bl BY w b, .0 Bl

Now consider the following augmented equation
T oB.T
a' -b, Vil = (bt
0 ’l] u, e Al (A2)

( e" is the first unit vector). This equation can be interpreted as an AR model for

the joint process { ¥, U} [Mo], since the RHS is equal to the joint innovations of
{y,u},since
€ = (€ = [~ Tt | = |bote

1 Uy~ Ry Ui gl e (A3)

Deterministic Case
We first consider the deterministic case where we are given impulse response
data or the Markov parameters. Writing the input/output relationship in matrix
notation (see sec, III) yields
Ty O a, = bu

I[T T»’v OT 01‘ . (Ad )
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where T, is a lower-triangular and HT is a full Toplitz matrix of the Markov
parameters (HT is the column reverse ordered Hankel matrix). Letting T-», we get

the normal equation

S B[, 1][a o] -

T T
= R T a o = C‘bobo Clbo
T, I |[b ¢ edo o |- (A5)

Stochastic Case
From a stochastic process point of view we can express the normal equation
associated with the augmented AR model as
vy umi @ oly - Eq[y,]Uubyu, 1)
u b, ¢, u

L L

t

= 51 [ T
= R d a 0 = |erbobo €10

We can solve for the normal equation of @, :

R a -(R,-1'7,]8, - (HH )a - oRE, . (A7)
The equations (A5), (A6), and therefore the non-Toplitz equations (A7) (!) can be
solved recursively with the LWR algorithm. Note that if R‘k = 0, the minimal
order n = k. We could bring equations (A5), (A6) into a more familiar form by the
interleaving permutation (1,3,5,...,2n-1,2,4,6,...,2n+2), cf. [MDHV], to convert
the two-process covariance matrix into a n by n block Toplitz matrix, with 2 by 2
blocks, however the LWR algorithm clearly applies to both representations with

suitable modifications.

Thus we have shown that the joint impulse response/covariance matching
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problem is equivalent to solving a set of normal equations associated with a two
channel AR modeling problem. Since the predictor for the joint process is
triangular and minimum phase, the denominator 8, of the underlying ARMA
model is also minimum phase and therefore stable, (for all k).

Equations (A5) and the elegant stability proof were actually first obtained by
Claerbout [Clal] via a least-squares rational approximation. The connections
between the joint innovations representation, the augmented normal equations,
and the Hankel matrix were pointed out in [Mo] and also in [MDKV], [MKD],
[DKM], where algorithms were given to solve equations of the type seen in (AB)
and (A7). For the special case where R has a "shift-low-rank" of one of the type
(B5), called the post-windowing method in [MDKV], a Levinson-type algorithm
was given recently by [MR]. The stability property of the AR model was proved

there using a somewhat more complicated Lyapunov technique.
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Appendix B: LS-Recursions for Ladder Forms
The Prewindowing Case
Given a series of observations {y(t), 0stsT}, where { () } can be m vectors, we
wish to find the least-squares one-step predictor of order p parametrized by the
(matrix) coefficients {Ap,T(i),iul. ..., p}. We can define many different squared

error criteria Ep,T' for instance as a function of s and f in

E,r* ‘é e, o€, E A, Viee-pl,
=3

A’p’T: [[,A'p’,m,... ,A’M(p)]. Viee-pl & {y," ..., y,_p‘] (B1)
An obvious choice from an Iinnovations point-of-view is (s=0,f=T), the
“pre-windowing" case [MDKV]. If s = p and f = T the so-called “covariance"
method is obtained, and if s = 0 and f = T + p we get the pre- and post-windowed
case or the "correlation" method [MG]). The total squared error can be expressed as
T YU

Py pT

T
EpuT " "'{ A P1T RPlT APlT} : RPrT = Y
Y, r & Lylo-p), yli-p+l], ..., YIT:T-p] ) (B2)
Thus the problem of determining Ap T by minimizing Ep T leads to
€ T €
R pA,p = (R ¢ 0 ... 0], trR poe minE, . (B3)
Although RP,T is not Toplitz, it still carries a certain shift-invariance structure,
given by the following identities

Ry = R, + YITT-p) YITT-pY

| el Sy = Rp-l,T x

x R

1,71 e s (BS)

Define the backward predictor B pT and the smoothing errors C pT

By R oy s 00, 0 R ) ¢ R & YITT-p). (B6)

T
pT “p,

Then the forward and backward prediction errors (innovations), ‘p.T ,and TpT o and
an auxiliary scalar ‘VP'T can be defined by

Le',r. r‘,,_r. Ypr) @ YIUTT-p) [Apg . Byp . Cpp)
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Order Update Recursions
Using the three shift-invariance identities for Rp,T (BS) and using some

symmetry properties, the order update recursions for Ap,T , Bp,T . Cp,T ' R‘p,’l‘ , and

Rr rare
Apar =~ (. 00 - K g B 0 00, 8T 7, 1
Blpar =00 Bpp 1 - K pRE o014, p 0F (B7)
CIp‘l,T - [CTp,T' 01 «+ r‘pd,r R"P,I,T B‘pOI.T where

Kpr = [lastblock row of RP’LT 1 Atp,T' o7
< [0, B" gy [first block row of R, 1. T".

R¢

T 5
R‘,,.l,'r = p,T i K pT R rp,T-l Kp,T

R a1 R ory - Ko RO 7K, ¢ (B8)
The order update recursions are very similar to the multivariate version of the
Levinson algorithm, and a similar set of recursions for time-update can also be
obtained [MDKV],[Mo].
Ladder Type Realization
Premultiplying the above equations by YI(T:T-p+1] , we obtain the following

order update recursions for€, ., r, 7, ¥

1 -r
Sl " P T K p,TR p,T-1"p,T-1
€
ol T = TpT- = KP-TR pT p,T
T %
7p‘I,T = 7p,'l‘ + ¥ psl,T R "p“'.'. rpd.T s (B9)

The "Kalman gain" Kp,T is obtained from [MV] as follows

K11 Kpr *+ Tor®pma | (1=Ypyqp) (810)

and the reflection or PARCOR coefficients are obtained by
€ 2 -€ . A 7 =
Kb @ Kip BSpi KNyp & Kiyp By (B11)

g




The initial conditions are given by

L SRR R - N N T B

-
€ 3 I | € : AN
Wy = Fox - ‘20 N T TR e

for p2T
by = Spps Ty = Ty T = Yy o
€ _ RE . R ooy :
R ','1' S R 'I','l' . I‘,Il,'l‘ = Il T,T 3 }\ P'rl‘ = 0,
; 1
I\p,)nl 2 Yo ‘p,[)*) :

As the dual to the stochastic forius in [IS], [Wak], [Mo], [SKM], equations
(B8)-(B11) are a complete set of order and time update recursions to obtain the

exact least-squares ladder form predictor, which is shown in Figure 1.

‘ yl " ‘o‘r l'»-‘ .T l'l'l'

Bira
~

B

-
=
“d
-
L
~
~

Figure 1. Ladder realization of exact onc-step least-squares predictor.

The recursion (B10) computes the sample cross-covariance of the forward and
backward innovations, using the optimal weighting 1/(1-7.,.), compared to other
suboptimal schemes [SV]. In the scalar case RP,T>O if 3=0, or in general if ¥, p<l,
since OS‘YP,TSl [MDKV]. If m>1, we require T2p+m. These singularities can be
avoided by including a priori estimates of the covariance R". or equivalently
including a weighted norm of the predictor &, in the error criteria Ep,’l‘- Several

such modifications have been proven useful in actual implementations.
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